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Abstract

We propose a model based on cycleGAN and attention. It can be applied to scene
transformation, for example, modifying a image of UC San Diego to be snowy.
cycleGAN, one of the prevailing condtional GAN, proposed by Zhu et al.[7] is
a good architecture for such tasks. In order to make the model more sensitive at
inferencing which parts of the image should be changed most from one domain
to another, we attempt to add an attention mechanism on cycleGAN. Mejjati et
al.[4] propose incorporating an attention mechanism so that the attention network
can accurately find the foreground that is within the domain of our interest. The
main contribution of our paper includes: we test the features of different generator
and discriminator architectures and conclude that generator with U-Net structure
and patch discriminator and a Mean-Square-Error GAN Loss would generate high
quality of images; we incorporate a attention mechanism with cycleGAN on spe-
cific task of adding snow scenery to images and make the modification reasonable;

1 Introduction

In this paper, we aimed to transform an image of UCSD to be in snowy winter. In the generated
image, some objects like buildings and trees should be kept. In an ordinary GAN, the generator
may remove these objects in the generated image and still succeed in fooling the discriminator.
Therefore, the consistency between the input and the output is also a requirement, which is fulfilled
by cycleGAN. A cycleGAN contains a pair of GANs, forward: G : X → Y,DY , and backward:
F : Y → X,DX . The cycle consistency is guaranteed by the cycle consistency loss which is
calculated by the difference of X and F (G(X)) or Y and G(F (Y )).

In the task of image-to-image translation, the basic idea is to train a model to learn the distribution
of two domains and the mapping between these two. But there could be thousands of mapping that
works for the generator to fool the discriminator. The solution space is too large for a general GAN
without any improvement to learn a stable parameter configuration. With cycle consistency loss, the
space of solutions to search is much narrower, as described in Zhu et al.[7]. And it is more possible
to train a mapping where X and Y is a meaningful pair as our expectation.

But there is still some potential improvement.

In the world of information, we are dealing with thousands of different types of signals, most of
which are visual signals such images and videos. As languages need to be translated in between
for better understanding and message exchange by paying attention to some keys in the context,
attention mechanism can also improve model performance on image-to-image translation tasks, such
as the translation of styles between images results in fantastic artistic effects[3], denoising images
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[6], and completing missing part of images. With an attention mechanism, a cycleGAN model can
be guided to work harder on some part of the image to make the output more reasonable and realistic.

Besides, since the original adversarial loss gives low gradient at the beginning of training gener-
ator, Zhu et al.[7] used least square sum to calculate the adversarial loss. In this paper, we used
Wasserstein loss suggested in Arjovsky et al.[1] to train the generator, which should give a better
outcome.

2 Motivation

Our project is motivated by the fact that style translation using cycleGAN usually performs domain
changing on the whole image. Although cycleGAN is generally good at this task, we find that
artifacts are generated sometimes because background are wrongly alternated. However, the back-
ground is actually not within our interested domain which should be left out unchanged. As a result,
we added an extra attention mechanism to basic cycleGAN architecture to enforce the translation
being applied only on interested domain of the image. For our specific summer to winter task, we
hope the attention would help the generator to focus on the places where snow could be added.

3 Dataset

Summer2Winter Yosemite

Summer2winter Yosemite is a data-set created and used in Zhu et al.[7]. We will train our model on
this data-set and compare our result with cycleGAN’s to check the performance improvement.

Cityscapes and Snow100K

We created a data-set of city views in summer and winter by combining two existing data-sets,
Cityscapes and Snow100K.

Cityscapes data-set provides 5000 annotated images with fine annotations under various conditions,
e.g. 50 cities, different seasons, varying backgrounds etc. Snow100K contains 100k synthesized
snowy images with corresponding snow-free ground truth images.

Since there are both summer and winter images in Snow100K, most images are from Snow100K.
But in order to add more information of city scenery, we introduced some images from Cityscapes.
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4 Methods

4.1 Network Architecture and Formulation

Figure 1: Network Architecture

Our framework will be built upon GAN and attention mechanism[5]. We will adapt our generator
and discriminator from cycleGAN.[7].

4.2 Data Flow in the Pipeline

As the diagram in figure (1) shows, the network includes both cycleGAN and attention mechanism.

1. generation of fake image: as the red solid path shows, an image in the X domain X is
fed into the generator GX→Y . A fake image is then generated but there is still something
about attention to do before reaching the fake image Y ′

2. attention mechanism for generator: the red dot path indicates that an image x is fed into
the attention network and the network generates an attention map ax where every element
value varies between 0 and 1. A negative attention map is also generated from ax by
1− ax. The orange solid path shows that the negative map element-wisely multiplies with
the original image x to get the original part, which is represented by the origin dash path.
Similarly, the red dash path represents the modified part. By element-wisely adding the
original part and the modified part together, the network finally generates the fake image
Y ′.

3. attention mechanism for discriminator: as the blue solid path shows, the discriminator
also uses the attention map to pay more attention to the modified area.

4. discrimination of images: the blue dash path shows that the fake image Y ′ and the real
image Y are both fed into the discriminator DY to distinguish fake images from those real
ones and then calculate loss.

5. cycle and cycle loss: along the green solid path, a fake image Y ′ is sent to the generator
FY→X to generate a recovered image X ′′. The attention mechanism is also used in this
path. Then, as what the green dash path shows, the cycle loss is calculated by comparing
X and X ′′.
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4.3 Generator

In cycleGAN, there are two generators GX→Y and FY→X . GX→Y and AX are combined as a new
generator G and F is similar. G and F are expected to be the inverse of each other. As mentioned
in Zhu et al.[7], we are actually training two autoencoders, F ◦G : X → X and G ◦ F : Y → Y .

Since we are learning a pixel-to-pixel translation between two images of the same size and this
task’s input-output is similar to image segmentation, we introduced a U-Net structure with encoder,
decoder and skip connections for our generator GX→Y and FY→X .

4.4 Discriminator

The discriminator in [3] utilizes the Markov assumption that pixels are independent with a distance
apart in an image. It penalizes the generator at the scale of patches, and convolves these batches
together to get the final output of discriminator. In this way, the network can run faster because there
will be fewer parameters and adapt to images of different sizes.

4.5 Loss function

4.5.1 Cycle Consistency

The goal of our task is to map images between two domains. To make such mapping more robust,
we add a constraint that enforces a backward translation which inverses the images in domain Y
back back to domain X and vise versa. i.e. For each images in X domain, the cycle translation
would bring it back itself and the same for Y domain.

Lcycle(G,F ) =| G(F (x))− x | + | F (G(y))− y | (1)
where G and F are both consist of the original generator (GX→Y , FY→X ) and their own attention
mechanism (AX , AY ).

4.5.2 Wasserstein Loss

Comparing to original implementation in cycleGAN which uses least-square loss, Wasserstein dis-
tance [1] is proved to be more robust against noise and the imbalance between generator and dis-
criminator. It is an efficient approximation of Earth Mover(EM) distance which is a good metric to
measure the distance between distributions. Wassersteins distance adapted in GAN setting is:

Ladv(G,F,DX , DY ) = (E[DY (y)]− E[DY (G(x))]) + (E[DX(x)]− E[DX(F (y))]) (2)
The above equation shows the competition between the generators and the discriminators: The
discriminators want to maximize the difference between the two distributions (i.e. the distribution
of the real images, and that of the generated images by the generators), while the generators try
to minimize their difference so as to fool the generator. These differences are represented by the
distance between the means.

4.5.3 Mean squared error

Following the loss function of LSGAN[?], we also implement a Mean-square Error as the adversarial
loss comparing to Wassersterin Loss. It defines as:

Ladv(G,F,DX , DY ) =
1

2
E[(DY (y)−a)2]+

1

2
E[(DY (G(x))−b)2]+

1

2
(E[(DX(x)−a)2]+

1

2
E[(DX(F (y))−b)2])

(3)
where a and b are the labels for real and fake data.

4.5.4 Generator Loss

We combined Wasserstein loss (Ladv) [1] with the cycle consistency loss (Lcycle) [7] in hoping to
extract their advantages:

L = min
G,F

max
DX ,DY

Ladv(G,F,DX , DY ) + λLcycle(G,F ) (4)
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The hyper-parameter λ governs the influence of the cycle consistency - the larger it is, the stricter it
enforces the cycled image to be similar to the original image, thus making the two generators inverse
of each other.

4.6 Attention

The attention mechanism is frequently used in sequence to sequence translation to strength the
correlation between the sub-element in side a sequence. In image to image translation task, we
want to learn a mapping from a source domain to a target domain. However, we find that generator
sometimes generates low quality image because it lacks the ability to focus on parts where actual
domain transformation happens. Thus, we want to add an attention mechanism to help generator
detect the most discriminative parts between source and target domain.
To do so, we add attention networks to guide our generator. Ax and Ay are two attention networks
for forward and backward directions respectively. It is expected that the attention networks will learn
where the most discriminative parts are. The output of the attention network will be a continuous
attention map. We will get the final generated image using Equation 5 where xa is the attention map,
so that the output image will be a blend of transformed foreground with unchanged background.

x′ = ax ⊙GX→Y (x) + (1− ax)⊙ x (5)

The discriminator will still use the full image without applying the attention map because unlike
traditional domain translation performed on specific objects, the distinction between foreground and
background is not that clear.

4.7 Evaluation Metric

We used Kernel Inception Distance (KID) proposed in [2] as our quantitative evaluation metric for
comparison. It measures the dissimilarity between two probability distributions using samples drawn
independently from each distribution. In [4], it reports the KID value for various GAN networks
which we adopted for our result comparison. We will report KID on Summer2Winter Yosemite
validation set as comparison.
We define X,Y as encoded samples from two domains, k as kernel function, m as the number of
samples in X domain and n as the number of samples in Y . The following function defines an
unbiased estimator of the Maximum Mean Discrepancy. X and Y should be drawn from hidden
space mapped after the pooling of inception network.

MMD2
u(X,Y ) =

1

m(m− 1)

m!

i ∕=j

k (xi, xj) +
1

n(n− 1)

n!

i ∕=j

k (yi, yj)−
2

mn

m!

i=1

n!

j=1

k (xi, yj)

(6)

5 Optimization method

5.1 ReZero

By using ReZero technique, we are able to significantly reduce our training time. In our attention
model and the ResNet generator, several residual blocks are used. To speed up the training of
these blocks, we use the ReZero method, which is adding a learnable scalar α to the output of the
convolution layer in a residual block:

x+ Conv(y) → x+ α× Conv(y) (7)

α is set to 0 at the beginning so that the problem of gradient vanishing or exploding problem is well
solved.

By using ReZero, we speeded up our training of Attention model from about 200 epochs to 6-10
epochs.
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5.2 Pretrain cycleGAN

This optimization is used along with attention. We find one problem with our attention mechanism
is that the attention map is not confident enough, the most confident value is around 0.6 at first.(The
attention map has continuous value between 0 and 1 for each pixel where a higher value indicates
the pixel is more likely to be within the domain of interested.) As a result, the generated images
are dominated by the background so that it is not so different from the original image. We think
the reason behind this phenomenon is that our generator works poorly at the very beginning which
misguides the attention map being prone to background in order to reduce the loss. To prevent this,
we pretrained our generator before training our attention map.

6 Results and Discussion

We run experiments on four architectures: ResNet with MSE, UNet with MSE, UNet with W-Loss
and UNet with MSE and attention where the ResNet and UNet are different architecture used for
generator.

Generator Architecture Loss Function Ratio(D/G) Optimizer Adding Attention
ResNet MSE 0.2 Adam No
UNet MSE 1 Adam No
UNet W-Loss 1 RMSprop No
UNet MSE 1 Adam Yes

Table 1: Hyper-parameter Table

6.1 Training details

We set the ratio of discriminator training vs generator training to be 1:5 (i.e. we train one epoch
of discriminator, and five epochs of generator after that) for Resnet MSE model because we ex-
perimented and found out that generator loss is harder to be optimized. It is also the reason why
we tried different loss functions. But in other experiments, a ratio of 1 is suitable as generator and
discriminator have the same strength.
For all experiments, we follow cycleGAN[7] and set λ = 10 in Equation 4. Batch size is 32. We
use Adam as both generator optimizer and discriminator optimizer with same learning rate(except
for WGAN, RMSprop is more stable). Learning rate decay is applied every 100 epochs with gamma
decay rete 0.1. We follow cycleGAN’s implementation of 2e−4 and the generator loss is optimized.
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6.2 ResNet vs UNet

Figure 2: Validation loss of Resnet MSE

Figure 3: Validation loss of Unet MSE

In the architecture of U-Net, the information from the down-sampling side is allowed to flow to the
up-sampling side through skipping connections. This special architecture allows U-Net to reserves
some common features in both the input domain and the output domain and transforms some unique
features of the input domain to the output domain.

From the two figures above, we can find that U-Net converges faster than ResNet because it learns
the mapping between two domains much better than ResNet. Also refer to the test images generated
in Figure 8, the images generated by U-Net are better than that generated from ResNet from the per-
spective of human evaluation. It indicates that the loss curve may not reveal correction information
of models. U-Net model is better at adapting to a new domain comparing to ResNet.
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6.3 MSE Loss vs W Loss

Figure 4: Validation loss of Resnet MSE

Figure 5: Validation loss of Resnet Wloss

Figure 6: Validation loss of Resnet Wloss
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By analyzing our validation loss curve, we could see that the generator and the discriminator are
competing with each other more in WGAN. The variance of Generator loss is more than that of
generator as the objective function of Wloss does not contain a regularization of loss norm. So we
add a gradient penalty regularization to constrain the change of gradient each step. The cycle loss in
WGan is not reduced as much as in the MSE Model, which means the images are not as precise as
the images in MSE model. The KID score in Table 2 also shows that the quality of images generated
by WGAN is further from the original input as it contains some upsample patterns. However, it does
not contain small noisy dot appeared in MSE model. Such difference is the result of loss function.

6.4 Attention

Figure 7: Original, Attention Map, Generated Image

The above is the original images in summer domain, its corresponding attention map and the gen-
erated images in winter domain. The brighter region in the attention map indicates the region that
mostly discriminates the two domain. We could see that the result attention map is pretty good. The
brighter region includes grass, trees and mountains which are reasonable regions to add snow. In the
generated image, the color of grass and trees are faded to get close to white. However, we notice
that the resulting image is not significantly different from the original image.We suspect the reason
is that our attention map is still not confident enough. The best case would be the foreground being
white in the attention map. We use the optimization of pretrain cycleGAN described in Section 5
and the attention map does has some improvement. However, because summer to winter domain
does not have distinctive boundary between foreground and background, we find the involvement of
background actually affects the performance of discriminator which tends to identify fake images
as real. As a result, the generator improves so slow. It is possible that the result will get better with
long enough training epochs.

6.5 Probelms

Generator Architecture Loss Function KID variance
ResNet MSE 0.0085 0.0026
UNet MSE 0.0086 0.0022
UNet W-Loss 0.0089 0.0025
UNet MSE 0.0083 0.0020

Table 2: KID Table
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Figure 8: Validation loss of Resnet Wloss

Our translation from summer domain of UCSD to winter domain is far from perfect. One of the
reasons is that it is hard to find a suitable dataset that matches our expectation. The summer to
winter dataset we used mainly contains summer and winter of natural sceneries. It would be better
if we have summer and winter dataset for architectures. The snow100k dataset we try to use does
not work well as its images various a lot and some of the images does not have clear distinction
between seasons.

As the Table 2. indicates that the images generated with attention are the closet to the original
images(KID is lowest). This is the result of reusing part of the original images as the fake images.
The variance is also the lowest since the map learned to guide the signal is served as a constrain.
However, the change of image is pretty mild and could be considered as ”conservative”.It only add
some whiteness to the ground.

7 Conclusion

In We tried both U-Net and ResNet as the generator, and found that U-Net performs better We
tried both patch and full image discriminator, and the results show that patch discriminator is a
better option By combining attention and U-Net, we successfully generated a picture of UCSD in
snowy winter Our goal is to transfer an image from summer to winter and add snow to it as a style
transformer. We see the fake image is generated as applied a filter on the original image. The shape
is conserved but a season transformer still needs much efforts. To achieve our goal, we need to find
the best task-specific hyper-parameters and a MSE loss might be a suitable function for our task.

8 Team Member Contribution

• Kening Zhang: implemented cycleGAN model, KID
• Shuyi Ni: implemented attention model
• Yuhan Liu: implemented discriminators
• Zhirui Dai: implemented generator, training pipeline, dataloader

References
[1] Martin Arjovsky, Soumith Chintala, and Lon Bottou. Wasserstein gan, 2017.
[2] Mikoaj Bikowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans,

2018.
[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional

adversarial networks, 2017.
[4] Youssef A. Mejjati, Christian Richardt, James Tompkin, Darren Cosker, and Kwang In Kim. Unsupervised

attention-guided image to image translation, 2018.
[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
[6] He Zhang, Vishwanath Sindagi, and Vishal M. Patel. Image de-raining using a conditional generative

adversarial network, 2017.
[7] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using

cycle-consistent adversarial networkss, 2017.

10


