
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 1

Learning Scene-Level Signed Directional Distance Function
with Ellipsoidal Priors and Neural Residuals
Zhirui Dai, Hojoon Shin, Yulun Tian, Ki Myung Brian Lee, Nikolay Atanasov

Abstract—Dense reconstruction and differentiable rendering
are fundamental tightly connected operations in 3D vision
and computer graphics. Recent neural implicit representations
demonstrate compelling advantages in reconstruction fidelity and
differentiability over conventional discrete representations such
as meshes, point clouds, and voxels. However, many neural
implicit models, such as neural radiance fields (NeRF) and signed
distance function (SDF) networks, are inefficient in rendering
due to the need to perform multiple queries along each camera
ray. Moreover, NeRF and Gaussian Splatting methods offer
impressive photometric reconstruction but often require careful
supervision to achieve accurate geometric reconstruction. To
address these challenges, we propose a novel representation called
signed directional distance function (SDDF). Unlike SDF and
similar to NeRF, SDDF has a position and viewing direction
as input. Like SDF and unlike NeRF, SDDF directly provides
distance to the observed surface rather than integrating along
the view ray. As a result, SDDF achieves accurate geometric
reconstruction and efficient differentiable directional distance
prediction. To learn and predict scene-level SDDF efficiently,
we develop a differentiable hybrid representation that combines
explicit ellipsoid priors and implicit neural residuals. This allows
the model to handle distance discontinuities around obstacle
boundaries effectively while preserving the ability for dense high-
fidelity distance prediction. Through extensive evaluation against
state-of-the-art representations, we show that SDDF achieves (i)
competitive SDDF prediction accuracy, (ii) faster prediction speed
than SDF and NeRF, and (iii) superior geometric consistency
compared to NeRF and Gaussian Splatting.

Index Terms—Signed directional distance function, differen-
tiable rendering, implicit neural field, view optimization

I. INTRODUCTION

F Inding the best 3D scene representation is a challenging
problem in computer vision. The appropriate representa-

tion varies between different applications depending on the
required operations, such as novel view synthesis, surface
reconstruction, occupancy estimation, and occlusion checking.
While explicit scene representations, e.g., based on meshes [3,
4, 5], point clouds [6, 7, 8], and voxels [9], are widely used,
they are not continuous and do not support differentiation. The
former hurts reconstruction accuracy and novel view synthesis,
while the latter hinders their uses within downstream tasks
requiring end-to-end differentiable rendering.

We gratefully acknowledge support from NSF FRR CAREER 2045945 and
ARL DCIST CRA W911NF-17-2-0181.

Zhirui Dai, Ki Myung Brian Lee, and Nikolay Atanasov are
with the Department of Electrical and Computer Engineering, Uni-
versity of California San Diego, La Jolla, CA 92093, US (e-mails:
{zhdai,kmblee,natanasov}@ucsd.edu).

Hojoon Shin is with Brain Corporation, San Diego, CA 92121, US (email:
hojoon.shin@braincorp.com).

Yulun Tian is with the Robotics Department, University of Michigan, Ann
Arbor, MI 48109, US (email: yulunt@umich.edu).

Recent work has focused on implicit scene representations
that support differentiable geometry reconstruction and novel
view synthesis. For example, occupancy networks [10] and
DeepSDF [11] have shown impressive results by representing
surfaces as the zero level set of an occupancy probability
function or a signed distance function (SDF). Neural radiance
field (NeRF) [12] and Gaussian Splatting (GS) [13] models
learn geometry implicitly through 2D image rendering super-
vision. Although these implicit differentiable methods offer
superior fidelity, they require multiple network forward passes,
complicated calculations per pixel/ray, and high memory use.

A promising recent approach that overcomes these limita-
tions is the signed directional distance function (SDDF). SDDF
is a directional formulation of SDF that takes a position and
a viewing direction as input (like NeRF and unlike SDF) and
provides the distance to the observed surface (like SDF and
unlike NeRF). The benefits of SDDF as a scene representation
are three-fold. First, SDDF models can provide fast, single
forward-pass directional distance queries in a differentiable
way, supporting operations such as novel view synthesis and
differentiable view optimization. Second, SDDF models can be
trained from different kinds of sensor data, including depth im-
ages and LiDAR scans, as long as they can be converted to ray
distances. This is in contrast with SDF models, which require
processing of sensor measurements to obtain SDF supervision
data, and with NeRF and GS models that commonly expect
camera images. Third, an SDDF model learns a geometric
representation in the space of positions and directions, which
allows arbitrary view synthesis and efficient occlusion queries.
This is in contrast with an SDF model which requires an
iterative sphere tracing algorithm [14] to compute distance in
a desired direction.

However, learning scene-level geometry in the space of
positions and directions is challenging. Compared to SDF,
the introduction of direction as an additional input requires
additional training data with diverse viewing directions to pro-
vide sufficient supervision. Another difficulty is that SDDF is
sensitive to the ray positions and directions because occlusions
introduce discontinuities in the observed distance. For these
reasons, previous methods for learning directional distance
models [15, 16] are only applicable to single-object shape
modeling. In contrast, we consider learning scene-level SDDF,
which is necessary for many applications ranging from mixed
reality to robotics, where rendering and directional distance
measurement are required at the scene level.

To address these challenges, we propose a method that
combines the advantages of explicit and implicit representa-
tions to learn SDDF at the scene level. As shown in Fig. 1,
our method first constructs an explicit ellipsoid-based prior to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 2

(a) Gibson Allensville (b) Ellipsoid Approximation (c) SDDF Ground Truth

(d) Ellipsoid-based SDDF Prior (e) SDDF Residual Prediction (f) SDDF Prediction (g) Prediction By RaDe-GS [1]

Fig. 1: (a), (c): We present a method to learn scene-level signed directional distance function (SDDF). (a), (b), (d): Our method
uses ellipsoids as an initial coarse approximation of the shapes of objects in the environment. (e), (f): The ellipsoid prior is
refined by a latent feature network and a shared decoder to predict the surface reconstruction residual. (f), (g): Our SDDF
learning method offers single-query differentiable novel distance image synthesis without RGB supervision as an alternative
to Gaussian Splat distance rendering (e.g., RaDe-GS [1]) or signed distance function sphere tracing (e.g., InstantNGP [2]).

capture the coarse structure and occlusions of the environment.
Then, an implicit residual neural network model corrects the
coarse ellipsoid predictions with precise details that capture
the fine structure of the environment. We guarantee that both
the ellipsoid prior and the residual network are differentiable,
and hence, our SDDF model supports single-query novel
view synthesis and differentiable view optimization. While
NeRF and GS focus on photometric rendering, our focus
in this paper is on geometric reconstruction with efficient
depth rendering, which can benefit various applications relying
on directional distances. In summary, this paper makes the
following contributions.

• We introduce a new definition of SDDF suitable for
scene-level representation, which extends the original
SDDF definition for single objects [15] to handle occlu-
sions in complex large-scale environments.

• We design a hybrid explicit-implicit model to approxi-
mate SDDF, consisting of an ellipsoid-based prior and
an implicit neural residual, and show that the full model
satisfies an Eikonal-like constraint by construction.

• We develop an algorithm to initialize the ellipsoid prior
and derive the gradients with respect to its parameters in
closed-form to accelerate training. Code is available at
https://github.com/existentialrobotics/neural sddf.

Our experiments show that our SDDF reconstruction method
achieves competitive results against state-of-the-art, highly
optimized implementations of SDF, GS, and NeRF in Replica
[17] and Gibson [18] scenes, in terms of reconstruction
accuracy, rendering speed, and GPU memory usage.

II. RELATED WORK

Three bodies of work are related to ours: NeRFs, implicit
geometric representations, and directional distance functions.

A. Neural Radiance Fields

The formulation of radiance fields is a recent direction in
scene representation that has led to significant improvements
in the synthesis of novel photometric views. The original
NeRF model [12, 19] employs volumetric rendering with
a neural network trained to predict the color and opacity
along a view direction at a given position, which are then
integrated for rendering. Such volumetric rendering, however,
is computationally expensive because many samples are re-
quired for along-ray integration. To mitigate this, subsequent
approaches [20, 21, 22, 23] introduce explicit data structures
for faster and more accurate rendering with a smaller memory
footprint. For example, PlenOctree [24] and Plenoxel [25] use
voxelized data structures such as an octree [24] or a regular
grid [25] to store spherical harmonics coefficients for better
efficiency. Similarly, neural point methods [26, 27, 28, 29]
use point clouds to store SH coefficients or neural features.
Gaussian Splatting (GS) [13] and its variants such as 2D-
GS [30] and rasterizing depth GS (RaDe-GS) [1] explore this
direction further by using a large number of Gaussians with
SH coefficients that can be explicitly rasterized to an image
through a projective transform. These methods show that a
hybrid model combining an explicit representation (e.g., point
cloud, octree, or Gaussians) with an implicit representation
(e.g., SH coefficients, or neural features) can offer a better
trade-off between rendering quality and speed. Drawing from
these methods, we also design a hybrid explicit-implicit scene

https://github.com/existentialrobotics/neural_sddf

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 3

representation. However, we focus on geometric accuracy
instead of photometric accuracy. One of our key contributions
in this paper is a new definition of SDDF suitable for scene-
level representation. We leave the application of our SDDF
representation to photometric rendering as future work.

B. Implicit Geometric Representations

Many previous scene representations consider geometric
reconstruction. Distance representations such as SDF [11, 31],
unsigned distance function (UDF) [32, 33], and truncated SDF
(TSDF) [34], model the scene geometry explicitly and offer
fast proximity queries, which are valuable in applications, such
as mapping and trajectory optimization in robotics [35, 36, 37].
To scale to larger environments, an effective strategy is to use
voxel hashing and incrementally estimate and store SDF in a
hash table [38, 3]. Gaussian process (GP) methods [39, 40] use
octrees to store incrementally estimated oriented surface points
and the corresponding GP models to regress SDF. Although
these methods achieve real-time incremental SDF estimation,
they fail to capture small-scale details accurately.

Recent approaches such as DeepSDF [11] and implicit
geometric regularization (IGR) [41] demonstrate that neural
networks can learn SDF accurately, with supervision from
oriented surface points and Eikonal regularization [41]. To
learn a geometric representation from images instead of sur-
face points, geometric representations can be incorporated in
a radiance field and used as a means to improve photometric
accuracy. For example, NeuS [42] replaces the opacity with
an SDF so that the geometry (i.e., SDF) and the radiance
field are learned together. RaDe-GS [1] proposes a geometric
regularization term that improves both geometric and photo-
metric accuracy. These results show that an accurate geometric
representation that we pursue here is fundamentally important
for both geometric and photometric accuracy. As part of our
contributions, the combination of explicit geometric prior and
implicit neural features achieves good balance of accuracy and
efficiency in SDDF prediction, which is an important conclu-
sion for future research on implicit geometric representations.

For geometric supervision, SDFDiff [43] and DIST [44]
use depth, surface normals, or silhouette for supervision by
differentiating through SDF queries in sphere tracing itera-
tions, although the sphere tracing process [14] itself is not
differentiable. Sphere tracing on SDFs can also be used
to compute directional distance as we do but its iterative
and cumulative nature leads not only to slower training and
rendering but also to error accumulation.

C. Directional Distance Functions

Directional distance functions (DDFs) provide directional
distance in a single query, and are hence more efficient and
free from error accumulation compared to SDFs. Directional
TSDF [45] extends TSDF in 3D to six voxel grids, each
along or against the X , Y , and Z axes. Since the method
uses only six discrete directions, its reconstruction accuracy
may be limited, but the importance of directional information
when modeling thin objects is evident. A signed ray distance
function (SRDF) [46] is defined with respect to a given camera

pose, as the distance of a 3D point to the scene surface along
the viewing lines of the camera. This definition is useful
for multiview stereo because SRDF is zero only when the
query point is on the surface. Volrecon [47] uses the same
term, SRDF, to instead denote simply the distance between
a point and the scene surface along a ray, which is closer
to our definition. This SRDF is used in volumetric rendering
for multiview stereo and high-quality rendering, which shows
the utility of the directional distance in capturing geometric
details. However, Volrecon uses multiple transformers, and
many samples along each ray, which is prohibitively slow for
scaling to larger scenes.

Other methods focus on learning DDFs at the object level.
NeuralODF [48] and RayDF [49] learn ray-surface distances
for an object bounded by a sphere that is used to parameterize
the ray. Sphere-based ray parameterization cannot apply to
scene-level DDF reconstruction because scenes may be un-
bounded. FIRe [50] combines SDF and DDF to reconstruct
object shapes, where DDF renders object shapes efficiently.
However, FIRe is difficult to scale to scene-level representation
because it requires silhouettes for good performance, which
cannot be directly captured by sensors. Pointersect [51] uses a
transformer to predict the ray travel distance, the surface nor-
mal vector, and RGB color given a dense point cloud generated
from multiple posed RGB-D images. Due to the dense point
cloud and the transformer, Pointersect exhibits slow rendering
and lower output quality when multiple surfaces exist along
the ray, which limits its scalability. The network architecture
of [15] is specialized in learning the SDDF at the object level.
It satisfied the directional Eikonal constraint by construction.
However, their definition and design are suitable only for
learning a single object. The probabilistic DDF (PDDF) [16]
introduces an additional “probability” network to learn the
discontinuities caused by occlusions. The method is designed
to learn PDDF at the object level. Although multiple objects’
PDDFs can be fused into a scene PDDF, its scalability is
limited, since many independent networks are needed for
each object in larger scenes. Moreover, the omission of sign
information obfuscates whether a query position is inside or
outside the objects. Instead, as shown in Fig. 2, our definition
of SDDF has fewer discontinuities than DDF, and can encode
complicated geometric structures ranging from small objects
to large scenes. Moreover, we design a hybrid explicit-implicit
model to approximate SDDF. The explicit ellipsoidal SDDF
prior not only learns a coarse SDDF approximation but also
helps to efficiently handle discontinuities. The implicit neural
residual further refines the SDDF prediction to capture fine
geometric details.

III. METHOD OVERVIEW

We aim to design a method for range sensors, such as
LiDARs or depth cameras, to learn an environment model
capable of efficient and differentiable synthesis of arbitrary
distance views. Let the occupied space in the environment
be represented by a set O ⊂ Rn, where n is the dimension
(n ∈ {2, 3} in practice). Consider a set of measurements
{Tt,Zt}Tt=1, where Tt ∈ SE(n) is the sensor pose at time

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 4

10 5 0 5 10

10

5

0

5

10

Tt SE(2)

2

2

t = { i, ri, t}N
i = 1

Range Sensor

(a) 2D Scene

10 5 0 5 1010

5

0

5

10

-10

-5

0

5

10

(b) SDDF (45◦)

10 5 0 5 1010

5

0

5

10

-15

-10

-5

0

5

(c) Object SDDF (45◦) [15]
10 5 0 5 1010.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

1
3
5

10

(d) DDF (45◦) [16]

Fig. 2: Example of our scene-level SDDF, the object-level SDDF of [15], and the DDF of [16] in a 2D synthetic environment.
(a): a range sensor (red triangle) with pose Tt ∈ SE(2) is measuring the distance to a doughnut-like obstacle O (black)
with a triangular hole in the middle (left plot). At time t, the sensor measurement Zt = {θi, ri,t}Ni=1 consists of N range
measurements ri obtained along rays (green lines) cast at angles θi. Measurements from multiple time steps {Zt}T−1

t=0 are
collected. (b) to (d): the red arrow in the three plots on the right labels the viewing direction. The white region in the right
three plots indicates invalid/infinite field values. Unlike DDF, our SDDF definition is continuous when transitioning from free
to occupied space along the viewing direction. Compared with object SDDF [15], our SDDF definition reflects the geometry
well, allowing scene-level reconstruction.

t and Zt = {vi, rt,i}Ni=1 are the measurements at time t,
consisting of N viewing directions vi ∈ Sn−1 (e.g., unit vector
in the direction of each depth camera pixel or unit vector in
the direction of each LiDAR scan ray) and the corresponding
range measurements rt,i ∈ R>0. Our objective is to learn a
representation of the occupied space O in the form of a signed
directional distance function.

Definition 1. The signed directional distance function (SDDF)
of a set O ⊂ Rn is a function f : Rn × Sn−1 → R ∪ {±∞}
that measures the signed distance from a point p ∈ Rn to the
set boundary ∂O along a direction v ∈ Sn−1, defined as:

f(p,v;O) :=

{
min{d > 0 | p+ dv ∈ ∂O}, p ̸∈ O,

max{d ≤ 0 | p+ dv ∈ ∂O}, p ∈ O.
(1)

The SDDF definition is illustrated in Fig. 2. For comparison,
the signed distance function (SDF) of a set O is defined as
the shortest distance from p ∈ Rn to the boundary ∂O:

fSDF(p;O) :=

{
miny∈∂O ∥p− y∥2 , p ̸∈ O,

−miny∈∂O ∥p− y∥2 , p ∈ O.
(2)

The SDF and SDDF of O are related as follows:

fSDF(p;O) = min
v∈Sn−1

f(p,v;O). (3)

It is well known [41, 40] that SDFs satisfy an Eikonal equa-
tion ∥∇pfSDF(p;O)∥2 = 1, which is useful for regularizing
or designing the structure of models for estimating SDF. The
next proposition shows that SDDF satisfies a similar property.

Proposition 1. Suppose an SDDF f(p,v;O) is differentiable
at p ∈ Rn. Then, it satisfies a directional Eikonal equation:

v⊤∇pf(p,v;O) = −1. (4)

Proof. When the ray hits the same surface point q = p+ dv
as p moves along v, we have:

v⊤∇pf(p,v;O) = lim
δ→0

f(p+ δv,v)− f(p,v)

δ

= lim
δ→0

(d− δ)− d

δ
= −1.

This directional Eikonal equation indicates that as the po-
sition p moves towards (away from) the intersected surface
along the direction v, the SDDF value decreases (increases)
at unit rate. This property is useful for designing the structure
or regularizing a neural network representation of SDDF.

Previous work [15] proposed an object SDDF that is defined
as min{d ∈ R | p + dv ∈ ∂O}. However, this definition is
only suitable for learning the shape of a single object because
when there is another object behind the viewing position p, the
object SDDF will ignore the object that the viewing direction
v is pointing at. Fig. 2c shows an example of this issue.

PDDF [16] addresses this problem by learning directional
distance without sign, defined as min{d ≥ 0 | p + dv ∈
∂O}. However, as shown in Fig. 2d, this definition introduces
several discontinuities, which is not favorable for learning a
directional distance model from data.

Our definition of SDDF, shown in Fig. 2b, guarantees that
the distance continuously changes from positive to negative
values when a viewing ray v enters the occupied space O
from outside in. However, when the ray leaves O from inside
out, there is a discontinuity in the distance. Fortunately, such
a discontinuity does not occur in practice because sensors
remain within free space, only observing O from outside-in.
Thus, our definition can accurately model occlusions while
retaining the sign to distinguish whether the query position is
in free space, unlike previous formulations of DDF [16].

Yet, learning a solely continuous, implicit representation of
our new SDDF definition remains challenging. Unlike an SDF,
SDDF is sensitive to both position and direction, as small

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 5

Fig. 3: Method overview. Given a query ray from position p ∈ R3 in direction v ∈ S2, an ellipsoid-based Prior network
P uses M ellipsoids {ξi, ri}Mi=1 to learn the rough shape of the environment such that it can determine the closest ellipsoid
intersected by the ray and predict an SDDF prior. Then, with the intersection point q ∈ R3 and ray direction v′ ∈ S2 in the
ellipsoid’s local frame, a Latent network L generates a latent feature z ∈ Rm, which is decoded by the Residual decoder R
into residual predictions (δi, δs, δf), i.e. the difference between the ground truth and the prior. Finally, we compose the SDDF
prediction as f̂ = f + δf . Blue arrows show the data flow in the forward pass, while red arrows represent the backward pass.

input perturbations may lead to hitting a different obstacle
surface, resulting in a significant change in SDDF value. The
inherent discontinuity and the added input dimensions for
the ray direction demand more training data over different
ray directions. Explicit representations have advantages in
handling such discontinuities with less data, but purely explicit
representations struggle to achieve high-fidelity reconstruction
and differentiable view synthesis, as they are discrete. In con-
trast, implicit representations are good at learning geometric
details and allow differentiation.

Therefore, as shown in Fig. 3, our model combines both
explicit and implicit representations. First, in Sec. IV, an
explicit ellipsoid-based Prior network P (p,v) is introduced
to predict a coarse SDDF prior f(p,v). Then, in Sec. V,
we present a residual network consisting of a Latent feature
network L and a Residual decoder R that predicts an SDDF
correction δf (p,v), so that the combination accurately models
the true SDDF f∗(p,v) as f̂(p,v) = f(p,v) + δf (p,v).

IV. ELLIPSOID-BASED PRIOR NETWORK

To take advantage of an explicit representation for occlusion
modeling, we design an ellipsoid-based prior network P . The
prior uses a set of ellipsoids to approximate the structure of
the environment based on the range measurements and leaves
the task of learning fine details to the residual network R.

A. SDDF of a Single Ellipsoid

First, for simplicity, consider a single ellipsoid given by:

E = {y ∈ R3 | (y − c)⊤RQ−2
0 R⊤(y − c) ≤ 1}, (5)

where c ∈ R3 and R ∈ SO(3) are the position and orientation,
Q0 = diag (r), and r ∈ R3

+ are the radii of the ellipsoid.
We parameterize the ellipsoid pose as:

T =

[
R c
0⊤ 1

]
= T0 exp

(
ξ∧

)
, ξ∧ =

[
θ∧ ρ
0⊤ 0

]
, (6)

where T0 ∈ SE(3) is initialized and fixed, and ξ = (ρ,θ) ∈
R6 is learnable. In (6), the function θ∧ maps a vector θ ∈ R3

to a corresponding skew-symmetric matrix, and exp is the
matrix exponential function.

To ensure that the radii r ∈ R3
+, we parameterize it as

r = r0 exp (s), where r0 ∈ R3
+ is initialized and fixed, s ∈ R3

is learnable, and exp is applied element-wise.
Then, we derive the SDDF of an ellipsoid E in closed form.

Proposition 2. Consider a ray from position p ∈ R3 in
direction v ∈ S2 and ellipsoid E ⊂ R3. If the ray does not
intersect E , the ellipsoid SDDF is f(p,v; E) = ∞. Otherwise:

f(p,v; E) = −
detQ0

√
i(p,v) + p′⊤Q2

1v
′

v′⊤Q2
1v

′
, (7)

where
i(p,v) = v′⊤Q2

1v
′ −w′⊤Q2

0w
′ (8)

is an intersection indicator, Q1 = det(Q0)Q
−1
0 , p′ =

R⊤ (p− c), v′ = R⊤v, and w′ = p′ × v′.

The proof of Proposition 2 is provided in Supplemental II-A.
The expression in (7) is one of the two solutions of the
quadratic equation formed by combining the ray equation
q = R⊤(p + f(p,v; E)v − c) and the ellipsoid equation
q⊤Q−2

0 q = 1. It corresponds to the first intersection point
along the ray direction, which aligns with the SDDF definition
in Definition 1. The intersection indicator i(p,v) in (8) is
positive when the line through p in direction v intersects E and
negative otherwise. When the line is tangent to the ellipsoid,
we have i(p,v) = 0. We also introduce a sign indicator:

s(p,v) = p′⊤Q2
1p

′ − detQ2
0, (9)

which is negative when p ∈ E and positive otherwise. We
use the above equation instead of p′⊤Q−2

0 p′ − 1 as the sign
indicator for better numerical stability.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 6

In order to specify a reasonable SDDF prior when the line
does not intersect the ellipsoid, i.e., when i(p,v) < 0, we
change the SDDF from ∞ to:

f(p,v; E) = −p′⊤Q2
1v

′

v′⊤Q2
1v

′
. (10)

The expression in (10) gives the distance from p′ along v′

to a virtual plane at the ellipsoid origin with normal vec-
tor Q2

1v
′/
∥∥Q2

1v
′
∥∥
2
. This guarantees that f(p,v; E) changes

smoothly when i(p,v) changes sign.
The expression in (7) is valid only when the ray from p

in the direction of v intersects E . If the ellipsoid E is behind
the ray, i.e., p ̸∈ E and s(p,v) > 0, then (7) is negative
but f(p,v; E) = ∞. We introduce a validity function v(p,v),
which is negative when E is behind the view ray. This allows
us to combine (7) and (10) with consideration of validity to
obtain a modified SDDF prior for a single ellipsoid:

f(p,v; E) =

{
−detQ0

√
β+p′⊤Q2

1v
′

v′⊤Q2
1v

′ , v(p,v) ≥ 0,

∞, v(p,v) < 0,
(11)

where β = max(i(p,v), 0) + ϵ, ϵ > 0 is a small value
introduced for numerical stability of backward propagation,
and the validity indicator function is defined as:

v(p,v) = −detQ0

√
β + p′⊤Q2

1v
′

v′⊤Q2
1v

′
s(p,v), (12)

which requires that the sign of a valid SDDF and the sign
of the indicator in (9) should agree. A 2D example in Fig. 4
shows that the ellipsoid SDDF prior f(p,v; E) in (11) reflects
Definition. 1 correctly.

The ellipsoid prior is also compatible with unsigned DDF,
which is advantageous when dealing with non-watertight or
thin objects where sign is ill-defined. In this case, one of the
axis radii may be set to 0 so that the 3D ellipsoid becomes a
2D disk. Additional details are presented in Supplemental I.

B. Fusing Multiple Ellipsoid SDDFs
To model scenes with multiple objects at different locations,

we consider a set of M ellipsoids Ej for 1 ≤ j ≤ M . Sec. IV-A
showed how to determine the SDDF fj(p,v), intersection
indicator ij(p,v), and sign indicator sj(p,v) for a single
ellipsoid in (11), (8) and (9), respectively. If p ∈ Ej , then
sj(p,v) ≤ 0. Hence, to determine whether p is contained in
any ellipsoid, we can find the minimum sj(p,v). When a ray
(p,v) intersects an ellipsoid, we have ij(p,v) ≥ 0. Hence, to
determine whether any ellipsoid is intersected, we can find the
maximum ij(p,v). Finally, the SDDF of a union of ellipsoids
is equal to the minimum of the individual ellipsoid SDDFs
but with the intersected ellipsoids prioritized. In summary, the
intersection indicator, the sign indicator, and the SDDF value
of a union of M ellipsoids are:

i(p,v;∪jEj) = max
j

ij(p,v), (13)

s(p,v;∪jEj) = min
j

sj(p,v), (14)

f(p,v;∪jEj) =

 min
j:ij(p,v)≥0

fj(p,v), ∃ij(p,v) ≥ 0,

minj fj(p,v), otherwise.
(15)

Thus, given M ellipsoids with pose and radii Tj , rj for
1 ≤ j ≤ M , we define our ellipsoid-based prior network as:

(i, s, f, jf) = P
(
p,v

∣∣ {Tj , rj}Mj=1

)
, (16)

where jf is the index of the ellipsoid selected by (15).
This ellipsoid index is used to condition the latent feature
computation, which will be described in Sec. V. We refer to
P in (16) as a network because its outputs are differentiable
with respect to p, v, Tj , and rj . We provide the analytical
gradients in Supplemental II-B.

Because our prior network uses ellipsoids to approximate
SDDF, it satisfies the Eikonal equation in (4) by construction.

Proposition 3. The SDDF f(p,v;∪jEj) in (15) computed by
the ellipsoid-based prior network satisfies the SDDF direc-
tional Eikonal equation in (4).

We provide the proof of Proposition 3 in Supplemental II-C.
Proposition 3 shows that the SDDF of a single ellipsoid
satisfies the Eikonal equation, and the fusion operations in
(13)–(15) preserve this property. The network P provides a
coarse geometric prior but does not yield accurate predictions.
We address this next.

V. RESIDUAL NETWORK

In this section, we design a residual network to predict a cor-
rection term δf (p,v) so that the SDDF prediction of our com-
bined prior and residual model, f̂(p,v) = f(p,v)+δf (p,v),
is accurate even for sets with complicated shapes. Intuitively,
we expect the prior network P to learn the rough shape of the
environment, encoded in f(p,v), while the residual network
R captures the details, encoded in δf (p,v).

A. Latent Feature Network

The residual network needs to estimate the SDDF correction
term δf (p,v) based on the local shape of the surface that the
ray (p,v) interacts with. We convert p and v to the local
coordinate frame of the first intersected ellipsoid and train a
latent feature network whose output z is decoded into a SDDF
correction by a residual decoder network δf = R(z).

Given a ray (p,v), the prior network in (16) provides
(i, s, f) and the index jf of the selected ellipsoid. Using the
pose of the jf -th ellipsoid Rjf ∈ SO(3), cjf ∈ R3, we obtain
the intersection point q in the ellipsoid frame:

q = R⊤
jf
(p+ fv − cjf) = p′ + fv′. (17)

We train a latent feature network z = L(q,v′, jf) with the
intersection point q, the local viewing direction v′, and the
ellipsoid index jf as inputs and a latent feature z as output.

We observe that the ellipsoid SDDF in (7) can be interpreted
as a nonlinear function of multiple multivariate polynomials
involving q and v′, where each variable’s maximum degree
is 2. While we use the ellipsoid prior network to exactly
compute the SDDF value for ellipsoids, we hypothesize that
the residual SDDF correction for complex shapes can also be
approximated as a function of similar polynomial terms of
q and v′, which learns certain implicit features of second-
order surfaces suitable for residual correction. Inspired by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 7

3 2 1 0 1 2 33

2

1

0

1

2

3

3

2

1

0

1

2

(a) 0◦
3 2 1 0 1 2 33

2

1

0

1

2

3

2

1

0

1

2

3

(b) 45◦
3 2 1 0 1 2 33

2

1

0

1

2

3

1

0

1

2

(c) 90◦
3 2 1 0 1 2 33

2

1

0

1

2

3

2

1

0

1

2

3

(d) 135◦

Fig. 4: 2D visualization of the single ellipsoid SDDF f(p,v; E) in (11) for fixed v and varying p. According to (11), the
SDDF prior for a single ellipsoid is finite when p is inside or when the ray intersects the ellipsoid or the virtual plane when p
is outside the ellipsoid. Otherwise, the SDDF prior is infinite, indicating that the ellipsoid is behind the ray. The virtual plane
is placed at the ellipsoid center with normal vector Q2

1v/
∥∥Q2

1v
∥∥
2
, which varies with the viewing direction v.

this observation, we design the network L to transform a
polynomial embedding vector into a latent feature vector:

z = L
(
q,v′, jf

∣∣ {Wi}Mi=1

)
= Wjfm ∈ Rm, (18)

m = vec
(
E(q)E(v′)⊤

)
∈ R100, (19)

E(p) =
[
p2x, pxpy, pxpz, p

2
y, pypz, p

2
z, px, py, pz, 1

]⊤
, (20)

where E : R3 → R10 is a degree-2 monomial embedding,
vec(·) concatenates the columns of the input matrix, m is
a vector of degree-2 monomials, and Wi ∈ Rm×100. The
expression in (20) constructs a 10-dimensional vector of all
degree-2 monomials of the input q ∈ R3 and v′ ∈ SO(3)
correspondingly. Then, (19) uses the outer product of the two
monomial vectors to generate a 100-dimensional vector of
degree-2 monomials involving both q and v′. Finally, (18)
uses a learnable weight matrix Wjf specific to the ellipsoid
index jf to transform the vector of monomials m into a latent
feature vector z ∈ Rm.

B. Residual Decoder

The residual decoder is a multi-layer perceptron R : Rm →
R3 that decodes the latent feature vector z ∈ Rm into three
residual predictions (δi, δs, δf). Then, the final predictions of
the intersection indicator, sign indicator, and SDDF value are

î(p,v) = tanh (αi(p,v)) + δi(p,v), (21)
ŝ(p,v) = tanh (αs(p,v)) + δs(p,v), (22)

f̂(p,v) = f(p,v) + δf (p,v), (23)

where α > 0 is a hyperparameter. Since the prior network
produces i(p,v) ∈ R and s(p,v) ∈ R but, as described later
in Sec. VI-A, we provide supervision i∗(p,v) ∈ {−1, 1} and
s∗(p,v) ∈ {−1, 1} for (21) and (22), and use tanh to squash
the output of the prior intersection indicator and sign indicator.
The residuals δi and δs are applied after the squashing to
prevent clipping their gradients during training.

Complementing Proposition 3, we show that the joint prior-
residual SDDF prediction f̂ in (23) still satisfies the SDDF
directional Eikonal equation by construction.

Proposition 4. The SDDF f̂(p,v) in (23) computed by the
combination of the prior and the residual networks satisfies
the SDDF directional Eikonal equation in (4).

The proof of Proposition 4 is presented in Supplemen-
tal III-A. The intuition behind the proof is that the input
position q, which is the intersection point between the ray
and the ellipsoid, does not change when p moves along the
ray direction v as long as the same ellipsoid is selected by
the prior network. Therefore, the residual SDDF correction
δf (p,v) remains unchanged when p moves along v, leading
to a zero directional derivative along v. Because our SDDF
model satisfies the Eikonal equation by construction, we do
not need an extra loss term to regularize the network and can
use fewer parameters in the model, making it more efficient
to train and evaluate.

VI. TRAINING

A. Dataset Generation and Augmentation

We convert the sensor poses and range measurements
{Tt,Zt}Tt=1, Zt = {vi, rt,i}Ni=1, described in Sec. III, into
a dataset D = {pj ,vj , f

∗
j , i

∗
j , s

∗
j}j suitable for training our

SDDF model. Here, pj ∈ R3 is the origin of the ray,
vj ∈ S2 is the direction of the ray provided in Zt, f∗

j

is an SDDF measurement, i∗j ∈ {−1, 1} is an intersection
indicator measurement, and s∗j ∈ {−1, 1} is a sign indicator
measurement. From each ray measurement vi, rt,i, obtained
from sensor position pt and orientation Rt, we generate a
corresponding data sample as pj = pt, vj = Rtvi, f∗

j = rt,i,
i∗j = 1, s∗j = 1. These data are unbalanced in the sign indicator
and the SDDF sign because all the samples have s∗j = 1 and
f∗
j ≥ 0. Therefore, we need to augment the data with negative

samples. For each sample (pj ,vj , , f
∗
j , i

∗
j , s

∗
j), we generate a

corresponding negative sample (p′,vj ,−ϵ, 1,−1), where we
extend the ray to a point p′ = pj +(f∗

j + ϵ)vj slightly behind
the observed surface with a small offset ϵ > 0. Although the
intersection indicator i∗j is also unbalanced, it is inefficient to
generate non-intersecting rays, and our experiments show that
augmenting the intersection indicator does not improve our
reconstruction results.

B. Ellipsoid Initialization

We present an initialization strategy for the M ellipsoids,
needed by the ellipsoid-based prior network P in Sec. IV.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 8

Algorithm 1 Single Ellipsoid Initialization

1: procedure SINGLEELLIPSOIDINIT(X = {xk}Kk=1)
2: c← 1

K

∑K
k=1 xi ▷ center

3: X←
[
x1 · · ·xK

]⊤ − 1c⊤

4: Eigen decomposition on 1
K
X⊤X = QΛQ−1

5: R← Qdiag
([
1 · · ·detQ

])
▷ rotation

6:
[
λ1 · · ·λn

]
← diag (Λ) ▷ n is the space dimension

7: ri ← max
(
rmin, α

√
|λi|

)
▷ radii

8: return R, c, r

(a) By Alg. 2 (b) By K-means++ [52] only

(c) Closer view of (a) (d) Closer view of (b)

Fig. 5: Comparison of ellipsoid initialization algorithms. The
left column is generated by Alg. 2 and the right column
is by the K-means++ [52] algorithm only (i.e. L3 to L5
of Alg. 2). (a) Using Alg. 2, a few ellipsoids are used to
approximate planar surfaces like ceiling, wall, and ground. (b)
Using K-means++ [52] only, too many ellipsoids are used to
approximate planar surfaces. (c) and (d) show close-ups of the
indoor objects. The table (in the green box) and the plant (in
the red box) are better approximated by ellipsoids from Alg. 2.

Using the augmented dataset D constructed above, we obtain
a point cloud:

X = {xk}Kk=1 = {pj + f∗
j vj | f∗

j ≥ 0}j ∪ {pj | f∗
j < 0}j ,

which is the collection of surface points and points inside
obstacles. Leaving the number of ellipsoids M as a hyperpa-
rameter, we use K-means++ [52] to divide X into M clusters
{Xm}Mm=1. For each cluster, we initialize an ellipsoid using
principal component analysis of the points in the cluster as
shown in Alg. 1. In practice, we set a minimum allowed
radius rmin = 0.005 to avoid numerical problems and scale the
ellipsoids by α = 3 to ensure that the points Xm are mostly
covered by the m-th ellipsoid.

However, in typical indoor environments, as shown in Fig. 5,
this approach allocates too many ellipsoids to planar surfaces,
which could be fit by a single flat ellipsoid. Hence, we propose
Alg. 2 to create a better multi-ellipsoid initialization. After
using K-means++ [52] to divide X into M clusters and create
an ellipsoid (Rm, cm, rm) for each cluster m by Alg. 1, we
build an undirected graph G = (V, E) where each node is a
flat ellipsoid i ∈ V (i.e. the mean projection β of xk ∈ Xm

to the shortest axis is smaller than threshold βmax), and

Algorithm 2 Multi-Ellipsoid Initialization

1: procedure MULTIELLIPSOIDINIT(X = {xk}Kk=1,M, S)
2: ▷ S is the number of ellipsoid neighbors
3: {Xm}Mm=1 ← K-MEANS++(X ,M)
4: for m = 1 · · ·M do
5: Rm, cm, rm ←SINGLEELLIPSOIDINIT(Xm)
6: j ← argmin1≤j≤n rm,j

7: nm ← Rmej

8: βm ← 1
|Xm|

∑
p∈Xm

n⊤
m (p− cm)

9: V ← ∅, E ← ∅ ▷ undirected graph
10: for i = 1 · · ·M,βi < βmax do ▷ flat ellipsoid
11: Ki ← K-NEARESTNEIGHBOR({cm}Mm=1, i, S)
12: for j ∈ Ki, βi < βmax do
13: η ← 1

2

(
|(ci − cj)

⊤ni|+ |(ci − cj)
⊤nj |

)
14: if η < ηmax then ▷ i and j are coplanar
15: V ← V ∪ {i, j} and E ← E ∪ {(i, j)}
16: {Vi}Ci=1 ← FINDCONNECTEDCOMPONENTS(V , E)
17: R← ∅,X ′ ← ∅
18: for i = 1 · · ·C do ▷ merge ellipsoids
19: R, c, r← SINGLEELLIPSOIDINIT(

⋃
m∈Vi

Xm)
20: R← R∪ {(R, c, r)}
21: X ′ ← X ′ ∪

⋃
m∈Vi

Xm

22: {X ′
m}M−C

m=1 ← K-MEANS++(X − X ′, M − C)
23: for m = 1 · · ·M − C do ▷ initialize other ellipsoids
24: R, c, r← SINGLEELLIPSOIDINIT(X ′

m)
25: R← R∪ {(R, c, r)}
26: return R ▷ M ellipsoid poses and radii

two nodes (i, j) are connected only when they are coplanar
neighbors. Then, we find the number of ellipsoids, C, for
these planar surfaces by finding the connected components
{Vi}Ci=1 of G. We merge the ellipsoids in each component Vi

running Alg. 1 on
⋃

m∈Vi
Xm. Finally, the remaining points⋃

m̸∈V Xm are divided into M−C clusters by K-means++ [52]
and the ellipsoid of each cluster is initialized by Alg. 1. As
shown in Fig. 5, the planar surfaces are correctly detected and
approximated by only a few ellipsoids, leaving more ellipsoids
for other more complex shapes.

C. Loss Function for Ellipsoid-based Prior Network

Given a prediction x = (i, s, f) from the ellipsoid-based
prior network P and the corresponding label x∗ = (i∗, s∗, f∗)
from the measurement data D, we compute a weighted sum
of Huber losses:

l0(x, y) =

{
0.5(x− y)2, if |x− y| < 1,
|x− y| − 0.5, otherwise,

l(x, y) =
(
w+

1(y ≥ 0) + w−
1(y < 0)

)
l0(x, y),

LP (x,x
∗) = l(i, i∗) + l(s, s∗) + l(f, f∗).

(24)

The role of P is to make the ellipsoids cover the objects in
the scene so that the occlusions between objects are captured.
Thus, larger weights are used for negative f∗ and negative s∗:
w−

f = 1.65 and w−
s = 10. The other weights are set to 1.

D. Loss Function for Residual Network

The residual network is trained using the same loss function
as the prior network in (24) but with different weights. Unlike
the prior network, the residual network focuses on learning

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 9

the geometric details. Thus, higher weights are used for the
SDDF prediction f̂ . Given the prediction x̂ = (̂i, ŝ, f̂) and the
corresponding label x∗ = (i∗, s∗, f∗) from the measurement
data D, we have

LR(x̂,x
∗) = l(̂i, i∗) + l(ŝ, s∗) + l(f̂ , f∗),

L(x̂,x,x∗) = LP (x,x
∗) + LR(x̂,x

∗),
(25)

where for LR, w+

f̂
= 1.0, w−

f̂
= 1.1, and other weights 0.1.

VII. APPLICATION TO VIEWPOINT OPTIMIZATION

Our SDDF model is differentiable and, hence, enables
continuous viewpoint optimization. This property is useful for
several applications, e.g., to guide navigation in virtual reality
or to enable a robot to explore an unknown environment. We
first consider determining the next-best view and then scale
up to optimization of a trajectory of several views. Our SDDF
model can predict a point cloud measurement from any desired
sensor pose (pt,Rt) as:

Pt = {pt + f̂iRtvi}Ni=1, (26)

where {vi}Ni=1 are the ray directions in the sensor frame and
f̂i are the SDDF predictions for each ray. The utility of a
point-cloud measurement for the purpose of exploration or
environment coverage can be evaluated in terms of the visible
region volume. We use the following loss to measure the
(negative) size of the visible volume:

Lv

(
{f̂i}Ni=1

)
= − 1

2N

N∑
i=1

(
max{f̂i, 0}

)2

. (27)

Moreover, consecutive measurements Pt and Pt+1 should
have a small overlap in order to observe a large area. There-
fore, we design the following overlap loss:

Lo (Pt,Pt+1) = −
∑

p∈Pt,q∈Pt+1
min{∥p− q∥2 , dmax}

|Pt||Pt+1|
,

(28)
where dmax > 0 is a distance threshold of no overlap.

In practice, we must also ensure that the sensor is not in
collision with any obstacles. To do so, we introduce a set
of risk detection rays, which are uniformly sampled from
the sphere that contains the robot, and obtain their SDDF
predictions {f̂r

i }Mi=1. The risk loss is defined as:

Lr

(
{f̂r

i }Mi=1

)
=

1

M

M∑
i=1

max {dsafe − f̂r
i , 0}, (29)

where dsafe > 0 is a safe distance threshold, chosen such that
f̂r
i < dsafe implies a potential collision.

We optimize the camera pose (pt+1,Rt+1) at time t + 1
by minimizing the weighted sum L = woLo +wvLv +wrLr,
where wo, wv , and wr are weights.

Considering multi-view trajectory optimization, it is ineffi-
cient to optimize every pose in a continuous trajectory because
two views that are close to each other are likely to overlap
significantly, i.e., with minimal change in the viewpoint.
Therefore, we consider optimizing certain waypoints on the
trajectory. We incrementally optimize n poses {pi,Ri}ni=0

generated by an off-the-shelf planning algorithm, such as

RRT* [53], such that for each pose {pi,Ri}i>0, we optimize
the loss:

L′ = woLo

(
P0

j<i⋃
j=1

P ′
j ,Pi

)
+ wvLv + wrLr, (30)

where P ′
j is the predicted point cloud at the optimized

waypoint (p′
j ,R

′
j). During the optimization, we downsample

P0

⋃j<i
j=1 P ′

j with a stride of i − j, labeled as P̃j , such that
P̃j has a constant size. This incremental optimization strategy
provides two benefits. First, it reduces the use of GPU memory
and makes the along-trajectory multi-view optimization prob-
lem solvable. Second, it allows to parallelize the trajectory
optimization and execution.

VIII. EVALUATION

We evaluate our SDDF model in terms of accuracy, compu-
tational efficiency, and usefulness for viewpoint optimization.
First, we compare against three state-of-the-art baselines on
synthetic and real datasets. Then, an ablation study examines
the effectiveness of each module in our model by varying
the number of ellipsoids, data augmentation and initialization
strategies, and the use of polynomial embedding. Finally, we
demonstrate the utility of SDDF in viewpoint optimization.

A. Comparison with Baselines

Baselines: We compare our method against three baselines:
Nerfacto (with and without depth loss, check Supplemen-
tal IV-B for details) [19], RaDe-GS [1], and SDF-Instant-
NGP [2]. These methods were not initially designed for SDDF
prediction but can be used to predict SDDF as follows. For
SDF, we implement sphere tracing [14] to find the closest point
on the surface along the query direction. For Nerfacto and
RaDe-GS, we render a depth image at the query viewpoint,
project the depth image to a point cloud, and compute the
distance. We compare the mean absolute error (MAE) in
SDDF prediction and the computational cost in terms of GPU
memory, model size, and inference time.

Datasets: A total of 15 datasets (14 synthesized and 1
real) are used for comparison. We obtained data from six
scenes from Replica (“Hotel” and “Office 0-5”) [54], the
Allensville scene from Gibson [18], and scene 0000-00 from
ScanNet [55].

From the seven synthetic scenes, we synthesize two sensor
types, LiDAR and RGB-D, for a total of 14 datasets. For both
sensor types, measurements are synthesized from a grid of free
space positions in the scene. LiDAR data is synthesized with
360 horizontal and 180 vertical angular increments, ranging
between [−π, π) × [−π/2, π/2]. RGB-D data is synthesized
from six uniform camera orientations, with an image resolution
of 640 × 480, and horizontal and vertical fields of view of
94◦ × 77◦. For each scene, we sample 20 random test view-
points (40 for Allensville), which were visually confirmed to
be representative of possible camera poses in real applications.

ScanNet [55] provides real RGB-D images captured along
a trajectory. During training, the RGB images are linearly
interpolated to align with the depth images of resolution

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 10

(a) Scene (b) SDDF G.T. (c) Prediction (d) SDDF Prior

Fig. 6: SDDF prediction by our method. Columns a) and b)
show RGB images and ground-truth SDDF. As shown in c),
our model remains accurate with varying view distance due to
satisfying the directional Eikonal constraint. As shown in d),
the ellipsoidal prior provides a coarse approximation of the
shape of objects in the scene, such as walls, chairs, and tables
to be used by the residual network.

640 × 480. We found that the quality of the reference mesh
from ScanNet is insufficient for generating SDDF ground
truths; thus, we used this dataset for qualitative comparison
only. The views for comparison are generated by randomly
selecting and perturbing waypoints of the trajectory (U[−0.2,0.2]

for each dimension of the translation and U[−π,π] for the yaw
angle) so that the rendered views are representative.

Experiment Setup: The LiDAR and RGB-D datasets are
used as follows. For our method, we consider both the LiDAR
and RGB-D cases. When using the RGB-D datasets with
our method, we only use the depth images and apply 20×
downsampling (5× for Replica Hotel) to achieve a similar
ray density as the LiDAR dataset. Similarly, for SDF-Instant-
NGP, we consider both LiDAR and RGB-D datasets and
use all range measurements in either the LiDAR or depth
images, along with additional data augmentations of near-
surface samples and free-space samples necessary for stable
training [2]. For Nerfacto and RaDe-GS, we only consider
the RGB-D case, as they do not support rendering LiDAR
data. RaDe-GS is trained with and without RGB (i.e., either
depth-only or RGB-D), whereas Nerfacto is only trained with
RGB-D, as RGB is necessary for training Nerfacto. RaDe-
GS is trained with 2× downsampling due to GPU memory
limitations, while Nerfacto is trained using the full dataset.

Our method uses 128 ellipsoids (256 for Gibson Allensville)
to fit an SDDF prior of the scene. In contrast, RaDe-GS uses
5% of the range measurements (3% for Allensville due to GPU
memory limits) to initialize one Gaussian for each measure-
ment, which yields many more Gaussians than our ellipsoids.
Further training details are provided in Supplemental IV.

Accuracy of SDDF Predictions: We first compare the
SDDF predictions made using different methods. Qualitative
results are shown in Figs. 6c and 7 (more results in Figs. 12-
14 in Supplemental V-A). Our SDDF model accurately learns
the geometry of the scene, as shown in the three qualitative
examples in Fig. 6. The overall model remains robust to

varying viewing distances because the latent feature for the
residual network is constructed from the intersection point
and the viewing direction in a way that satisfies the Eikonal
constraint (Proposition 4). The ellipsoidal prior (Fig. 6d) is
optimized to approximate the shapes of objects in the scene,
based on which the residual network recovers fine details
with high fidelity, as seen in Fig. 6c. This ellipsoid-based
network design allows readily combining different sensor
measurements of the same surface into a neural representation.

Fig. 7 shows qualitative comparisons against RaDe-GS [1]
(RGB-D and depth-only), Nerfacto [19], and SDF-Instant-
NGP [2] with sphere tracing. In Fig. 7c, RaDe-GS exhibits
erroneous artifacts around the toilet, at the corner, or near
the fridge, where there are limited RGB-D observations.
Meanwhile, our method accurately reconstructs these areas.
Nerfacto also exhibits artifacts due to insufficient data as
shown in Fig. 7e. Since no explicit representations like our
ellipsoids or the Gaussians in RaDe-GS are used, Nerfacto
predicts SDDF based on the learned volume density, which
is optimized for photometric rendering rather than scene
geometry, leading to large distance prediction errors.

Meanwhile, sphere tracing on SDF-Instant-NGP [2] does
not exhibit significant artifacts. However, this baseline tends
to learn smoother shapes that lack sharper details, such as the
plant shown in the second row or the chairs in the third row
of Fig. 7f. Moreover, the first row of Fig. 7f shows that the
errors accumulated during sphere tracing become significant
at boundaries when the SDF model does not predict accurate
SDF consistently. These qualitative observations are consistent
in real ScanNet data [55], as shown in Fig. 7 and Fig. 14 in
Supplemental V-A.

The quantitative results in Table I show that our method
reaches the state of the art for both LiDAR and RGB-D
datasets. Our method has slightly higher errors on RGB-
D datasets because our method only uses depth information
from the RGB-D datasets, whereas RaDe-GS uses both RGB
and depth data. Moreover, our method is trained with 20×
downsampling, whereas RaDe-GS uses 2× downsampling and
hence approximately 10× more depth data. Consequently,
RaDe-GS uses a significantly higher number of parameters
as seen in Table II. Nerfacto and SDF-Instant-NGP do not
downsample the data, but generally perform worse than ours.
Training with depth loss [56] does not improve the distance
predictions by Nerfacto. We examine the results of Nerfacto
and depth-Nerfacto further in Supplemental IV-B. With RGB-
D datasets, RaDe-GS [1] has the lowest MAE among models
that use both RGB and depth. However, as shown in Table I
and in Fig. 7d, when RaDe-GS is trained using depth data only,
it shows significantly larger errors in larger and more compli-
cated scenes. We omit quantitative evaluation on ScanNet data
(Fig. 14 in Supplemental V-A), due to the unavailability of a
reliable ground-truth mesh.

Computational Efficiency: Table II shows the computa-
tional cost of all methods, in terms of training time, inference
time, number of parameters and maximum GPU memory
usage during training and testing. Our method exhibits the
lowest memory usage for training and testing, and the second
lowest number of parameters after SDF-Instant-NGP [2]. This

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 11

(a) Scene (b) SDDF (ours) (c) RaDe-GS [1] (d) w/o RGB [1] (e) Nerfacto [19] (f) SDF [2]

Fig. 7: Qualitative comparison of SDDF predictions. Row 1: Replica Hotel (synthesized). Row 2: Gibson Allensville
(synthesized). Row 3: ScanNet scene 0000-00 (real). In areas with limited sensor measurements, RaDe-GS [1] fails to learn
the geometry, with RGB (c) or without RGB (d), yielding artifacts. Nerfacto [19] in e) shows significant artifacts and large
distance prediction error. SDF-Instant-NGP [2] in f) tends to learn a smoother approximation, missing sharp boundaries.

TABLE I: Mean absolute error (cm) of SDDF prediction

Allensville Hotel Office 0 Office 1 Office 2 Office 3 Office 4

LiDAR SDF-Instant-NGP [2] 1.137 1.224 0.825 0.724 1.342 1.608 1.037
SDDF (ours) 1.350 0.997 1.092 0.694 1.236 1.588 1.132

RGB-D RaDe-GS [1] 1.737 0.857 0.438 0.348 1.258 0.827 0.498
Nerfacto [19] 83.433 58.272 63.011 68.382 69.144 74.168 88.479

depth-Nerfacto [19] 85.655 61.706 65.074 69.767 74.422 79.227 76.535

Depth Only
RaDe-GS (w/o RGB) [1] 25.002 45.948 1.208 6.654 3.582 0.955 0.500

SDF-Instant-NGP [2] 1.106 1.297 0.737 0.711 1.120 1.395 0.953
SDDF (ours) 1.490 1.247 1.120 0.696 1.081 1.568 1.206

TABLE II: Max. GPU memory usage, model size, and infer-
ence time on Replica-Hotel dataset [54] (Intel 14900K CPU
and NVIDIA RTX-3090 GPU). Training time is the time took
by the model to reach MAE < 1.5 cm.

SDDF RaDe-GS Nerfacto SDF
Training GRAM (G) 3.3 18.7 4.7 6.2
Testing GRAM (G) 1.7 6.7 3.6 1.8
No. Parameters (M) 2.7 113.7 16.4 1.7
Training Time (min) 100 30 N/A 3

Inference Time (ms/frame) 69 7 254 103

is because we use much fewer ellipsoids than Gaussians in
RaDe-GS [1], which has the highest GPU memory usage.
The lower GPU memory usage of our method is beneficial
for scaling up to larger scenes, or deployment on mobile
robots with limited hardware resources. Although Nerfacto
has relatively low GPU memory usage, it has the longest
inference time, and its prediction error is much higher than
other methods.

In terms of inference time, our method is the second best,
with RaDe-GS significantly outperforming our method. We
attribute this to the highly optimized, full-CUDA implemen-
tation of RaDe-GS, and expect that it is possible to achieve
similar performance with improvements in the implementa-
tion. Our method is 1.5× faster to infer the directional distance
than the SDF-Instant-NGP-based sphere-tracing method, and

4× faster than Nerfacto. This is because our method only
requires a single forward pass, whereas the other methods
require multiple passes. It is also worth noting that our method
is faster than SDF-Instant-NGP despite their CUDA optimized
implementation. However, because of the extra direction input,
our model needs more time to train, which is a future direction
for improvement.

B. Ablation Study

We examine the performance of our model in four vari-
ations. We first consider using twice or half the number of
ellipsoids for each scene. To investigate the contribution of
negative sample augmentation, we compare against an SDDF
model trained without negative samples. In addition, we train
SDDF models with ellipsoids initialized by K-means++ [52]
only. To demonstrate the benefit of our polynomial embedding,
we compare it against Fourier embedding [57]:

m=[sin(2πBpp), cos(2πBpp), sin(2πBvv), cos(2πBvv)] ,
(31)

where Bp,Bv ∈ R25×3 are random Fourier features sampled
from N (0, 1). We use (31) in place of (20) and (19), while
(18) is kept so that the model size remains unchanged. The
results are summarized in Table III. Lastly, we illustrate
the advantages of our SDDF definition compared to related
formulations [15, 16].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 12

TABLE III: Ablation experiments on LiDAR datasets. Mean absolute error (cm) of SDDF prediction is reported.

Allensville Hotel Office 0 Office 1 Office 2 Office 3 Office 4
twice number of ellipsoids 1.414 1.013 1.034 0.716 1.291 1.649 1.250
half number of ellipsoids 1.477 1.013 1.072 0.706 1.218 1.727 1.192
without negative samples 5.379 2.639 1.954 0.867 2.734 8.598 2.406

K-means++ [52] only ellipsoid initialization 1.405 1.033 1.060 0.703 1.279 1.636 1.248
Fourier embedding 1.842 1.303 1.544 0.930 1.771 2.513 1.631

default 1.350 0.997 1.092 0.694 1.236 1.588 1.132

Table III shows that although our method is robust to the
number of ellipsoids, using too few or too many ellipsoids
causes problems. With too few ellipsoids, the model cannot
approximate the shape of objects in the scene well, whereas
with too many ellipsoids, the model learns spurious occlusions
between the ellipsoids. During testing, we also found that too
many ellipsoids cause the optimizer to move some redundant
ellipsoids out of the scene.

Negative SDDF sample augmentation plays a key role in
optimizing ellipsoids. Fig. 8 shows that with negative SDDF
samples, the ellipsoid priors are optimized to cover the scene
well. In contrast, without negative samples, the resulting
ellipsoids are generally smaller and regress into the interior
of objects, which leads to missing ray intersections. Missing
ray intersections cause a wrong ellipsoid to be selected at a
further location, leaving the burden to the residual decoder R
to learn larger residuals.

Appropriate ellipsoid initialization is also important. As
shown in Table III, initializing the ellipsoids solely with K-
means++ [52] causes larger errors, as K-means++ generally
uses an excessive number of ellipsoids for planar surfaces.

We also consider using the Fourier embedding [57] in place
of the polynomial embedding introduced in this work. The
Fourier embedding may seem useful because it can learn high-
frequency features. However, the results in Table III show
that polynomial embedding provides better generalization for
different scenes with smaller errors. Our investigation indicates
that this is because the Fourier embedding requires different
spatial frequency hyperparameters for each scene to achieve
comparable performance, whereas the polynomial embedding
does not require such hyperparameter tuning.

Direct comparison against DDF [16] was not possible due to
the unavailability of source code, while the SDDF method of
[15] can handle only object-level reconstruction. We illustrate
the advantage of our SDDF formulation in a simple 2D scene
in Fig. 9. The first row shows that our SDDF definition
has fewer discontinuities than DDF [16], while the SDDF
of [15] fails to capture the two circles due to its object-
level representation of the box. The discontinuities in DDF
[16] translate into a larger learning error than our SDDF, as
we demonstrate in the second row of Fig. 9 using an MLP
model with hidden dimensions [16, 8, 8, 1]. Faster convergence
to lower error in both training and validation with the same
model indicates that our SDDF formulation is more amenable
to learning than DDF.

C. Application to Viewpoint Optimization

The first row of Fig. 10 demonstrates gradient-based next-
best view optimization using our SDDF model. The second

(a) Default (b) W/o negative samples

Fig. 8: Ablation study of negative samples augmentation. With
negative sample augmentation in a), the ellipsoids cover the
objects in the scene. Without negative sample augmentation
(b), the objects are not covered by ellipsoids in many places.

Fig. 9: Comparison of SDDF against DDF [16] and object
SDDF [15] in a 2D scene with two circles in a square box.
Top row: ground truth targets with a fixed viewing direction
v = (−1, 0). Bottom row: training and validation MAE (m)
when learning using an MLP.

row shows the combined surface area observed by the two
camera views and the overlapped area between the two
views. The visualization shows that our method can reduce
the overlap between the two camera views and increase the
observed area. In this example, the area observed by the two
camera views increases to 36.15m2 (+90.3%) from 19.00m2

with the initial viewpoints. In the third row of Fig. 10, we
show an example of scaling up to a trajectory. By optimizing
the waypoints, the observed area increases from 124.55m2

to 177.50m2 (+37.7%). We show more results of viewpoint
optimization in different scenes in Supplemental V-B. These
results illustrate a capability that SDDF enables for the first
time as a proof of concept. While the same trajectory optimiza-
tion can be done with SDF and differentiable sphere tracing,
this will be much slower and less stable due to the multiple
sphere tracing iterations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 13

(a) Initial (b) Reduce Overlap (c) Increase Visibility

(d) Step vs Observed Area (e) Step vs Overlapped Area

(f) Initial (g) Optimized

Fig. 10: Visualization of differentiable view optimization. In
(a), (b) and (c), the black camera Ct is at time t. The orange
camera Ct+1 is at time t + 1 with optimized pose. The cyan
point cloud is Pt and the blue one is Pt+1. The trajectory of
Ct+1 during the optimization process is colored in red. Starting
from the setup in (a), Ct+1 is optimized to reduce the overlap
between Pt and Pt+1 as shown in (b). In (c), the camera
Ct+1 gets a bigger view not overlapped with Ct’s than (b).
The risk loss ensures that Ct+1 stays away from the wall while
trying to get a larger view. (d) and (e) show the curves of total
observed area and overlapped area, respectively. (f) and (g)
show an example of optimizing multiple trajectory waypoints.
With our method, the observed area along the trajectory is
significantly larger.

D. Limitations

Our method has several limitations. The training of SDDF
requires enough diversity in ray directions, which necessi-
tates data augmentation techniques when insufficient sensor
observations are available. Diversity in viewing directions is
especially important for our model to excel with sparser mea-
surements, as evident in the downsampling in our experiments.
As shown in the results, our model performs worse with
RGB-D measurements, although the RGB-D camera generates
denser observations than the LiDAR in our experiments. This
is due to the RGB-D camera having a smaller vertical field
of view and, hence, less diversity in viewing directions. This
suggests a future research direction of efficiently enhancing
the variety of viewing directions subject to a limited sensing
budget. One approach is to synthesize additional viewing
directions based on the existing measurements using methods
like hidden point removal (HPR) [58]. However, HPR requires

computing the convex hull of the point cloud, which can
be computationally expensive for large-scale scenes. It is
important to consider more efficient ways to collect diverse
viewing directions in future work. Another direction is to train
the model with losses that encourage generalization to unseen
viewing directions. For example, we can synthesize viewing
rays hitting the same surface point but from different directions
and enforce consistency in the predicted SDDF values for these
rays.

It is also important to speed up the training of the SDDF
model to make it scale to even larger scenes and be applicable
in real-time reconstruction scenarios. One possible direction is
to explore the combination of differentiable sphere tracing [44]
with scene-level SDF and SDDF learning, where the SDF and
SDDF models improve each other to accelerate convergence.

Although our method is not very sensitive to the number of
ellipsoids, the algorithmic addition and pruning of ellipsoids
will obviate the need to choose the correct number and
improve robustness to different scenes. The current imple-
mentation is not well optimized, although it is faster than
SDF-based sphere tracing. Addressing these limitations is an
interesting direction for future work.

IX. CONCLUSION

In this work, we introduced a new definition of SDDF
suitable for scene-level representation and differentiable ren-
dering, and developed a hybrid explicit-implicit model to learn
SDDF. Our method uses ellipsoids to obtain a coarse geometric
prior and a residual network with latent features, obtained from
the ellipsoids, to correct the differences between the prior and
the ground truth. Our experiments demonstrate that SDDF is
a promising scene representation for fast novel view rendering
and gradient-based viewpoint optimization.

REFERENCES

[1] B. Zhang, C. Fang, R. Shrestha, Y. Liang, X. Long, and P. Tan,
“RaDe-GS: Rasterizing Depth in Gaussian Splatting,” in arXiv
preprint: arXiv 2406.01467, 2024. 2, 3, 9, 10, 11

[2] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant Neural
Graphics Primitives with a Multiresolution Hash Encoding,”
ACM Trans. Graph., 2022. 2, 9, 10, 11

[3] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3D Euclidean Signed Distance Fields
for On-board MAV Planning,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017. 1, 3

[4] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang,
“Pixel2Mesh: Generating 3D Mesh Models from Single RGB
Images,” in ECCV, 2018. 1

[5] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera:
an Open-Source Library for Real-Time Metric-Semantic Lo-
calization and Mapping,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 1689–1696. 1

[6] J. Behley and C. Stachniss, “Efficient Surfel-Based SLAM
using 3D Laser Range Data in Urban Environments,” Robotics:
Science and Systems XIV, 2018. 1

[7] F. Lu, G. Chen, Y. Liu, Y. Zhan, Z. Li, D. Tao, and C. Jiang,
“Sparse-to-Dense Matching Network for Large-Scale LiDAR
Point Cloud Registration,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2023. 1

[8] Y. Zeng, J. Hou, Q. Zhang, S. Ren, and W. Wang, “Dynamic
3D Point Cloud Sequences as 2D Videos,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024. 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 14

[9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An Efficient Probabilistic 3D Mapping
Framework Based on Octrees,” Autonomous Robots, 2013. 1

[10] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy Networks: Learning 3D Reconstruction
in Function Space,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[11] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “DeepSDF: Learning Continuous Signed Distance Func-
tions for Shape Representation,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 1, 3

[12] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis,” in European Conference
on Computer Vision (ECCV), 2020. 1, 2

[13] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D
Gaussian Splatting for Real-Time Radiance Field Rendering,”
ACM Transactions on Graphics, 2023. 1, 2

[14] J. C. Hart, “Sphere Tracing: a Geometric Method for the
Antialiased Ray Tracing of Implicit Surfaces,” The Visual
Computer, 1996. 1, 3, 9

[15] E. Zobeidi and N. Atanasov, “A Deep Signed Directional
Distance Function for Shape Representation,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2024. 1, 2, 3, 4, 11, 12

[16] T. Aumentado-Armstrong, S. Tsogkas, S. Dickinson, and
A. Jepson, “Representing 3D Shapes with Probabilistic Directed
Distance Fields,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 1, 3, 4, 11, 12

[17] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J.
Engel, R. Mur-Artal, C. Ren, S. Verma, A. Clarkson, M. Yan,
B. Budge, Y. Yan, X. Pan, J. Yon, Y. Zou, K. Leon, N. Carter,
J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira, M. Savva,
D. Batra, H. M. Strasdat, R. D. Nardi, M. Goesele, S. Love-
grove, and R. Newcombe, “The Replica Dataset: A Digital
Replica of Indoor Spaces,” arXiv preprint arXiv:1906.05797,
2019. 2

[18] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese,
“Gibson Env: Real-World Perception for Embodied Agents,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2, 9

[19] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang,
A. Kristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAllister,
and A. Kanazawa, “Nerfstudio: A Modular Framework for
Neural Radiance Field Development,” in SIGGRAPH, 2023. 2,
9, 10, 11

[20] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++:
Analyzing and Improving Neural Radiance Fields,” in arXiv
preprint: arXiv 2010.07492, 2020. 2

[21] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-
Brualla, and P. P. Srinivasan, “Mip-NeRF: A Multiscale
Representation for Anti-Aliasing Neural Radiance Fields,”
in IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 2

[22] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and
J. Valentin, “FastNeRF: High-Fidelity Neural Rendering at
200FPS,” in IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2

[23] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and
P. Debevec, “Baking Neural Radiance Fields for Real-Time
View Synthesis,” in IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2

[24] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
“PlenOctrees for Real-time Rendering of Neural Radiance
Fields,” in IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2

[25] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht,
and A. Kanazawa, “Plenoxels: Radiance Fields without Neural
Networks,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2022. 2
[26] K.-A. Aliev, A. Sevastopolsky, M. Kolos, D. Ulyanov, and

V. Lempitsky, “Neural Point-Based Graphics,” in European
Conference on Computer Vision (ECCV), 2020. 2

[27] R. Rakhimov, A.-T. Ardelean, V. Lempitsky, and E. Bur-
naev, “NPBG++: Accelerating Neural Point-Based Graphics,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

[28] Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli,
and U. Neumann, “Point-NeRF: Point-based Neural Radiance
Fields,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[29] Q. Zhang, S.-H. Baek, S. Rusinkiewicz, and F. Heide, “Dif-
ferentiable Point-Based Radiance Fields for Efficient View
Synthesis,” SIGGRAPH Asia, 2022. 2

[30] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao, “2D Gaus-
sian Splatting for Geometrically Accurate Radiance Fields,” in
SIGGRAPH, 2024. 2

[31] C. Chen, Y.-S. Liu, and Z. Han, “NeuralTPS: Learning Signed
Distance Functions Without Priors From Single Sparse Point
Clouds,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025. 3

[32] X. Long, C. Lin, L. Liu, Y. Liu, P. Wang, C. Theobalt,
T. Komura, and W. Wang, “NeuralUDF: Learning Unsigned
Distance Fields for Multi-View Reconstruction of Surfaces with
Arbitrary Topologies,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 3

[33] Y.-T. Liu, L. Wang, J. Yang, W. Chen, X. Meng, B. Yang,
and L. Gao, “NeUDF: Learning Neural Unsigned Distance
Fields With Volume Rendering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024. 3

[34] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-
time 3D Reconstruction at Scale Using Voxel Hashing,” ACM
Trans. Graph., 2013. 3

[35] K. M. B. Lee, Z. Dai, C. L. Gentil, L. Wu, N. Atanasov, and
T. Vidal-Calleja, “Safe Bubble Cover for Motion Planning on
Distance Fields,” in arXiv preprint: arXiv 2408.13377, 2024. 3

[36] L. Wu, K. M. B. Lee, C. Le Gentil, and T. Vidal-Calleja, “Log-
GPIS-MOP: A Unified Representation for Mapping, Odometry,
and Planning,” IEEE Transactions on Robotics, vol. 39, no. 5,
pp. 4078–4094, 2023. 3

[37] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klin-
gensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa,
“CHOMP: Covariant Hamiltonian Optimization for Motion
Planning,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1164–1193, 2013. 3

[38] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-
time 3D Reconstruction at Scale using Voxel Hashing,” ACM
Transactions on Graphics (TOG), 2013. 3

[39] B. Lee, C. Zhang, Z. Huang, and D. D. Lee, “Online Continuous
Mapping using Gaussian Process Implicit Surfaces,” in IEEE
International Conference on Robotics and Automation (ICRA),
2019. 3

[40] L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful
Euclidean Distance Field From Log-Gaussian Process Implicit
Surfaces,” IEEE Robotics and Automation Letters (RA-L), 2021.
3, 4

[41] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman,
“Implicit Geometric Regularization for Learning Shapes,” in
International Conference on Machine Learning (ICML), 2020.
3, 4

[42] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang,
“NeuS: Learning Neural Implicit Surfaces by Volume Rendering
for Multi-View Reconstruction,” in International Conference on
Neural Information Processing Systems (NeurIPS), 2021. 3

[43] Y. Jiang, D. Ji, Z. Han, and M. Zwicker, “SDFDiff: Differ-
entiable Rendering of Signed Distance Fields for 3D Shape
Optimization,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 3

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH 20XX 15

[44] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui,
“DIST: Rendering Deep Implicit Signed Distance Function
With Differentiable Sphere Tracing,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. 3,
13

[45] M. Splietker and S. Behnke, “Directional TSDF: Modeling
Surface Orientation for Coherent Meshes,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2019. 3

[46] P. Zins, Y. Xu, E. Boyer, S. Wuhrer, and T. Tung, “Multi-
View Reconstruction Using Signed Ray Distance Functions
(SRDF),” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023. 3

[47] Y. Ren, F. Wang, T. Zhang, M. Pollefeys, and S. Süsstrunk,
“VolRecon: Volume Rendering of Signed Ray Distance
Functions for Generalizable Multi-View Reconstruction,” in
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023. 3

[48] T. Houchens, C.-Y. Lu, S. Duggal, R. Fu, and S. Sridhar,
“NeuralODF: Learning Omnidirectional Distance Fields for 3D
Shape Representation,” in arXiv preprint: arXiv 2206.05837,
2022. 3

[49] Z. Liu, B. Yang, Y. Luximon, A. Kumar, and J. Li, “RayDF:
Neural Ray-Surface Distance Fields with Multi-View Consis-
tency,” in Neural Information Processing Systems (NeurIPS),
2023. 3

[50] T. Yenamandra, A. Tewari, N. Yang, F. Bernard, C. Theobalt,
and D. Cremers, “FIRe: Fast Inverse Rendering using Direc-
tional and Signed Distance Functions,” in IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 2024.
3

[51] J.-H. R. Chang, W.-Y. Chen, A. Ranjan, K. M. Yi, and O. Tuzel,
“Pointersect: Neural Rendering with Cloud-Ray Intersection,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 3

[52] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages
of Careful Seeding,” in ACM-SIAM Symposium on Discrete
Algorithms, 2007. 8, 11, 12

[53] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for
Optimal Motion Planning,” in arXiv preprint: arXiv 1105.1186,
2011. 9

[54] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green,
J. J. Engel, R. Mur-Artal, C. Ren, S. Verma, A. Clarkson,
M. Yan, B. Budge, Y. Yan, X. Pan, J. Yon, Y. Zou, K. Leon,
N. Carter, J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira,
M. Savva, D. Batra, H. M. Strasdat, R. D. Nardi, M. Goesele,
S. Lovegrove, and R. Newcombe, “The Replica Dataset: A
Digital Replica of Indoor Spaces,” in arXiv preprint: arXiv
1906.05797, 2019. 9, 11

[55] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “ScanNet: Richly-annotated 3D Reconstructions of
Indoor Scenes,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 9, 10

[56] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-
supervised NeRF: Fewer Views and Faster Training for Free,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 10

[57] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil,
N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and
R. Ng, “Fourier Features Let Networks Learn High Frequency
Functions in Low Dimensional Domains,” in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 11, 12

[58] S. Katz, A. Tal, and R. Basri, “Direct Visibility of Point Sets,”
ACM Trans. Graph., 2007. 13

Zhirui Dai (Graduate Student Member, IEEE) is
a Ph.D. student of Electrical and Computer Engi-
neering at the University of California San Diego,
La Jolla, CA, USA. He obtained a B.S. in Physics
from Fudan University, Shanghai, China, in 2019
and an M.S. in Electrical and Computer Engineering
from the University of California San Diego in 2021.
His research focuses on mobile robot autonomy and
particularly on mapping and task planning.

Hojoon Shin is an autonomy engineer at Brain
Corporation. He obtained a B.S. in Mechanical and
Aerospace Engineering from Seoul National Univer-
sity, Seoul, South Korea, in 2021 and an M.S. in
Mechanical Engineering from the University of Cal-
ifornia San Diego in 2023. His current work focuses
on autonomous robotics, with particular interest in
navigation and motion planning.

Yulun Tian (Member, IEEE) is an Assistant Profes-
sor of Robotics at the University of Michigan, Ann
Arbor, MI, USA. Prior to this appointment, he was a
Postdoctoral Scholar at the Contextual Robotics In-
stitute, University of California San Diego, La Jolla,
CA, USA. He received the B.A. degree in Computer
Science from UC Berkeley, Berkeley, CA, USA, in
2017, and the S.M. and Ph.D. degrees in Aeronautics
and Astronautics from Massachusetts Institute of
Technology, Cambridge, MA, USA (2019 and 2023).
His work received the 2024 Best Dissertation Award

from the IEEE RAS Technical Committee for Multi-Robot Systems, the 2022
King-Sun Fu Memorial Best Paper Award from the IEEE Transactions on
Robotics, a 2021 Honorable Mention from the IEEE Transactions on Robotics,
and a 2020 Honorable Mention from the IEEE Robotics and Automation
Letters. His current research interest includes spatial perception, trustworthy
autonomy, and multi-agent systems.

Ki Myung Brian Lee (Member, IEEE) is a Post-
doctoral Scholar at the Contextual Robotics Institute,
University of California San Diego, La Jolla, CA,
USA. He received the B.Eng. (Hons I) degree in
mechatronics (space) from the University of Syd-
ney, Camperdown, NSW, Australia, and the Ph.D.
degree in robotics from the University of Technol-
ogy Sydney, Ultimo, NSW, Australia, in 2023. He
was recognized as an RSS Pioneer of 2023, and
was the recipient of the UTS Research Excellence
Scholarship. His current research aims to develop

novel representations of environments and tasks that accelerate planning and
control. More broadly, he is interested in mobile robot autonomy in previously
unseen environments.

Nikolay Atanasov (S’07-M’16-SM’23) is an As-
sociate Professor of Electrical and Computer Engi-
neering at the University of California San Diego,
La Jolla, CA, USA. He obtained a B.S. degree in
Electrical Engineering from Trinity College, Hart-
ford, CT, USA in 2008 and M.S. and Ph.D. de-
grees in Electrical and Systems Engineering from
the University of Pennsylvania, Philadelphia, PA,
USA in 2012 and 2015, respectively. Dr. Atanasov’s
research focuses on robotics, control theory, and
machine learning with emphasis on active perception

problems for autonomous mobile robots. He works on probabilistic models
for simultaneous localization and mapping (SLAM) and on optimal control
and reinforcement learning algorithms for minimizing probabilistic model
uncertainty. Dr. Atanasov’s work has been recognized by the Joseph and
Rosaline Wolf award for the best Ph.D. dissertation in Electrical and Systems
Engineering at the University of Pennsylvania in 2015, the Best Conference
Paper Award at the IEEE International Conference on Robotics and Automa-
tion (ICRA) in 2017, the NSF CAREER Award in 2021, and the IEEE RAS
Early Academic Career Award in Robotics and Automation in 2023.

	Introduction
	Related Work
	Neural Radiance Fields
	Implicit Geometric Representations
	Directional Distance Functions

	Method Overview
	Ellipsoid-based Prior Network
	SDDF of a Single Ellipsoid
	Fusing Multiple Ellipsoid SDDFs

	Residual Network
	Latent Feature Network
	Residual Decoder

	Training
	Dataset Generation and Augmentation
	Ellipsoid Initialization
	Loss Function for Ellipsoid-based Prior Network
	Loss Function for Residual Network

	Application to Viewpoint Optimization
	Evaluation
	Comparison with Baselines
	Ablation Study
	Application to Viewpoint Optimization
	Limitations

	Conclusion
	Biographies
	Zhirui Dai
	Hojoon Shin
	Yulun Tian
	Ki Myung Brian Lee
	Nikolay Atanasov

