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Abstract—Accurate and efficient environment representation is
crucial for robotic applications such as navigation, path planning,
and manipulation. Signed distance function (SDF) has emerged
as a powerful representation due to its ability to encode obstacle
boundaries and provide distance information, useful for collision
checking in motion planning and safety constraint specification in
autonomous navigation. However, existing SDF learning methods
face significant limitations: voxel-based approaches suffer from
fixed resolution constraint and lack uncertainty quantification,
neural network methods require high computational cost for
training, and existing Gaussian process (GP) based methods
struggle with scalability, sign estimation, and inconsistent un-
certainty quantification. In this letter, we propose Kernel-SDF,
which uses kernel regression to learn SDF with uncertainty
quantification in real-time. Our approach consists of a surface
estimation front-end that handles sensor noise and dynamic
environment changes by using kernel regression in Hilbert space
to learn the surface as a continuous occupancy field, and a back-
end that learns accurate SDF using GPs, i.e., kernel regression
in the functional space. Our method provides accurate SDF
estimates, gradient predictions, uncertainty quantification, and
online mesh construction at real-time rates. Evaluation results
show that Kernel-SDF achieves superior accuracy compared to
existing methods and outstanding real-time performance, making
it suitable for various robotic applications requiring reliable
environment representation with uncertainty awareness.

I. INTRODUCTION

A good representation of the environment structure is crucial
for many robotic applications, such as scene reconstruction,
localization, collision checking, path planning, navigation,
and manipulation. Such a representation should meet several
requirements: 1) accuracy to reflect the environment structure,
2) computational efficiency to allow real-time processing,
3) scalability to incrementally handle large environments,
4) robustness to noise, 5) uncertainty quantification to support
risk-aware decision making, 6) differentiability to support
gradient-based optimization, 7) adaptability to dynamic en-
vironments, and 8) compatibility with different sensors.

Various representations have been proposed in the literature,
including occupancy grids [1], point clouds [2]–[4], meshes
[5], [6], and implicit functions such as signed distance func-
tion (SDF) [7]–[29], neural radiance fields (NeRF) [30], etc.
Among these, SDF attracts much attention due to its ability
to represent obstacle boundaries as its zero level set, which
is useful for scene reconstruction [8] and localization [29],
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(a) SDF visualization (b) Online reconstructed mesh

Fig. 1: An example of 3D SDF mapping using the proposed Kernel-
SDF framework. (a) Visualization of the learned SDF as a heatmap,
where warmer colors indicate higher SDF values (free space) and
cooler colors indicate lower SDF values (occupied space), as well as
the voxels (colored by height) that indicate the locations where local
BHMs and GPs are instantiated. (b) The online mesh reconstructed
in real-time from the surface estimation front-end of Kernel-SDF.

its distance information about the nearest obstacle, which is
useful for collision checking and path planning [31], and its
differentiability that is useful for gradient-based optimization
in reconstruction [22], navigation [32], localization [29] etc.

A wide range of methods have been proposed to learn dis-
tance functions from range sensors (LiDAR or depth camera).
Voxel-based methods [7], [8], [11], [13], [18] mostly learn
truncated SDF (TSDF), and some of them further estimate
a discrete grid of SDF values [11], [13], [21], [25]. These
voxel-based methods maintain a dense discrete approximation
of TSDF or SDF with a fixed resolution, which suffers from
the trade-off between accuracy and computational efficiency,
and is lack of uncertainty quantification and differentiability. In
contrast, Neural network (NN) based methods [12], [20], [22],
[23], [26], [29] learn SDF as a continuous function, which is
compact and achieves high-fidelity results. However, they are
not suitable for online learning due to the high training cost
to converge to a good solution and mostly learn TSDF.

On the other hand, Gaussian process (GP) [33] based
frameworks [14], [15], [24], [27], [28] are non-parametric
and capable of building accurate Euclidean distance function
(EDF). However, previous GP-based methods suffer from
several challenges: 1) high computational cost as the scale
increases, 2) lack of robust distance sign estimation, and
3) inconsistency between the GP variance and the actual
SDF prediction error. To address the first issue, Octree [15]
or OpenVDB [28] are used to split the training data into
smaller chunks for training multiple GPs. GMMGP [27] tries
to recover the sign and quantify prediction error by using SDF
prior obtained from hierarchical Gaussian mixture model and
GP. However, the SDF prior used by GMMGP has larger errors
as the query position moves away from the surface.



In this letter, we propose a method that couples occupancy
spatial hierarchical tree (e.g. quadtree for 2D or octree for 3D)
with Bayesian Hilbert map (BHM) [34] and Gaussian process
(GP) [33] to learn SDF that meets the mentioned requirements.
We present an example of learning SDF with our method in
Fig. 1, which shows the hierarchical tree structure for storing
multiple BHMs and GPs, the reconstructed mesh, and the SDF
prediction. Kernel-SDF is capable of incrementally building a
differentiable SDF in real-time with range sensors (e.g. LiDAR
or depth camera). Kernel-SDF consists of a surface estimation
front-end and an SDF prediction back-end. The front-end uses
multiple BHMs, which are kernel regression in Hilbert space,
to estimate the surface as a continuous occupancy field, which
provides robust sign estimation. Besides, marching algorithms
are used to extract surface points from the occupancy field as
training data for the back-end. The back-end uses multiple
GPs, which are kernel regression in functional space, to
learn SDF with uncertainty quantification. To enable real-time
performance, our method employs a spatial hierarchical tree
and priority queues for efficient storage and updates of both
the BHMs and GPs.

Our method is capable of providing accurate SDF es-
timates, gradient prediction, uncertainty quantification, and
online mesh construction at real-time rates. The contribution
of this letter is as follows:

1) an open-source, real-time extensively-tested C++ imple-
mentation that can be used in various robotic applications,
supporting 2D and 3D environments with interfaces for
Python and ROS1/ROS21;

2) a method that couples BHM and GP with spatial hierar-
chical tree to build a differentiable SDF representation of
the environment with uncertainty quantification;

3) a robust surface estimation front-end that supports both
depth camera and LiDAR sensors, handling sensor noise
and dynamic environment changes;

4) an efficient SDF prediction back-end that accurately
learns SDF and predicts SDF gradients with uncertainty
quantification.

II. RELATED WORK

Existing methods for learning SDF related to this letter
can be roughly categorized into three groups: voxel-based
methods, neural network (NN) based methods, and Gaussian
process (GP) based methods.

A. Voxel-based Methods

Many frameworks have been proposed to learn SDF with
grids as the underlying data structure [7]. KinectFusion [8] and
so on [9], [10], [18] propose to learn projective TSDF, which
is inaccurate due to the projection. VoxField [19] learns non-
projective TSDF, which is more accurate but still not suitable
for tasks that require full distance information about the
nearest obstacle. Voxblox [21] and VoxField [19] extend TSDF
to SDF by breath-first-search (BFS) based integration from
the occupied voxels. FIESTA [13] chooses to do the integral
with occupancy map, but also reveals that estimated SDF

1Available at https://github.com/ExistentialRobotics/erl_gp_sdf

values are still inaccurate due to the BFS integration. What’s
worse, the SDF estimates are maintained in a grid with fixed
resolution, which makes it unscalable for larger environments
and demand of higher resolution. VDBblox [21] and nvblox
[25] try to address the scalability issue by using OpenVDB
[35] or GPU-based voxel hashing. However, these voxel-
based methods still cannot provide uncertainty quantification
and are indifferentiable. Hence, we propose to use Gaussian
process (GP) to learn SDF such that the resolution limitation
is eliminated and differentiability is provided.

B. Neural Network Based Methods

Neural Network (NN) based methods become popular be-
cause they provide differentiability natively and have the
potential to learn high-fidelity SDF thus better surface re-
construction, as shown by DeepSDF [12], which uses an
MLP with latent features to learn SDF of objects. NN-
based methods show various applications of SDF. NeuS [16]
and NeuS2 [22] combine SDF with neural radiance fields
(NeRF) [30] to learn SDF and rendering jointly. PIN-SLAM
[26] and MISO [29] implement simultaneous localization and
mapping (SLAM) based on learning global consistent SDF
map with neural features. H2-Mapping [23] introduces voxel-
based method to provide SDF prior for neural TSDF learning,
which is co-optimized with volume rendering. However, most
NN-based methods are far behind the real-time performance
due to the high training cost. Although some works like H2-
Mapping [23] and PIN-SLAM [26] manage to learn neural
SDF online, they sacrifice the SDF accuracy very much. In
constrast, Gaussian process (GP) is non-parametric so that is
suitable for online learning.

C. Gaussian Process Based Methods

However, GP-based methods still face some challenges. One
main challenge is the high computational cost as the scale
increases due to the matrix inversion in the GP regression.
GPIS [14] presents an online GP-based framework that splits
the training data into smaller chunks with octree and trains
multiple GPs for each chunk. However, the SDF estimation
drops to the zero-mean prior quickly as the query position
moves further away from obstacles. Log-GPIS [15] exploits
the connection between the heat kernel and unsigned distance
function (UDF), and improves GPIS by learning UDF in
the log space, which predicts UDF accurately. However, the
transformation to log space causes the lose of sign information,
which is crucial for SDF, and distorts the variance estimation
that the GP variance explodes when the query position is far
away from the surface. Besides, the proposed surface estima-
tion method that generates training data for GPs is prone to
sensor noise and dynamic changes in the environment. VDB-
GPDF [28] tries to improve the surface estimation by using
OpenVDB-based TSDF fusion with locally trained Log-GPIS
but does not address issues of sign prediction and uncertainty
quantification. Thus, we propose our Kernel-SDF framework
that aims to address all these issues. The BHM-based surface
estimation front-end is capable of handling dynamic changes
in the environment and sensor noise, and providing cleaner
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surface estimation and sign prediction via the continuous
occupancy field [34], [36]. Then, the back-end learns SDF with
multiple GPs and softmin-based uncertainty estimation, which
predict SDF and its gradient with uncertainty quantification.

III. PROBLEM STATEMENT

Consider a robot in an n-dimensional environment O ⊂ Rn

(n = 2, 3). The robot is equipped with a sensor, such as a
LiDAR or a depth camera, that yields a stream of range mea-
surements {St}Tt=1 = {Rt,ot,Pt}Tt=1, where Rt ∈ SO(n)
and ot ∈ Rn are the orientation and position of the sensor at
time t, and Pt the point cloud of measurements in the sensor
frame. Our objective is to learn an SDF representation of the
environment O:

d(x) =

{
miny∈∂O ∥x− y∥2 , x ̸∈ O,
−miny∈∂O ∥x− y∥2 , x ∈ O.

(1)

SDFs have two important properties: 1) the object surface ∂O
can be recovered as the zero-level set of the SDF; and 2) the
gradient is of unit norm whenever it is differentiable:

d(x) = 0 ∀x ∈ ∂O, and ∥∇d(x)∥2 = 1 a.e. x ∈ O. (2)

As we mentioned in Sec. II-C, existing GP-based SDF learn-
ing methods face several challenges, including high computa-
tional cost as the scale increases, lack of robust distance sign
estimation, and inconsistency between the GP variance and
the actual SDF prediction error. However, as a non-parametric
method, GP is suitable for online learning. Hence, in this letter,
we propose Kernel-SDF to address these challenges and learn
SDF in real-time with uncertainty quantification. As shown in
Fig. 2, our framework consists of a surface estimation front-
end and a SDF prediction back-end. The front-end, which
is presented in Sec. V, takes in the sensor observation and
estimates the surface points D = {xi ∈ ∂O}Ni=1, which are
then used as training data for the GPs . Then, the back-end
utilizes the GPs to estimate the SDF, the SDF gradient, and
the SDF variance, which is described in Sec. IV.

IV. SDF PREDICTION BACKEND

To yield an SDF prediction, the SDF prediction backend
utilizes the surface points with variance Dsurf = {xi, σ

2
xi
}Ni=1

estimated by the surface estimation front-end, which will be
described later in Sec. V. Given that the occupancy field by the
Bayesian Hilbert map (BHM) front-end provides a robust sign
prediction, in this section, we focus on learning the unsigned
distance function (UDF) from Dsurf with GPs and estimating
its uncertainty from the surface point uncertainty.

Same as the main ideas of [15], [24] that it is easier to learn
a surrogate function f as a GP, such that the unsigned distance
function |d̂| is obtained through a nonlinear transform |d̂(x)| =
r(f̂(x)). Such a surrogate function should be monotonically
decreasing with respect to the distance |d(x)| to the nearest
surface point, such that f → 0 as |d(x)| → ∞ and f →
1 as |d(x)| → 0, which is consistent with zero-mean prior
GP regression that as the query point goes far away from the
training set, the posterior mean goes to zero.

TABLE I: Kernel functions and their nonlinear transforms.

Kernel kS(r) r(f̂)

RBF exp
(
− r2

2l2

) √
−2l2 log f̂

Matérn 3/2
(
1 +

√
3r
l

)
exp

(
−

√
3r
l

)
− l√

3
log f̂

Hence, given the sign prediction sign(x) based on the
occupancy field from the front-end, we can obtain the SDF
prediction and its gradient from the surrogate function as:

d̂(x) = sign(x)r(f̂(x)),

∇d̂(x) = −sign(x)∇f̂(x)
/
∥∇f̂(x)∥2.

(3)

A. Regression of Surrogate

The surrogate function f̂ is predicted from the surface point
observations by modeling it as a log-GP f ∼ GP (0, k(x,x′))
with a stationary kernel k(x,x′) = kS(∥x − x′∥) having
observations y = kS(0) = 1 on the surface points:[

f̂(x∗)

∇f̂(x∗)

]
=

[
k⊤
∗

∇⊤
x∗
k∗

]
(K+Σy)

−11,

V[f̂(x∗)] = k(x∗,x∗)− k⊤
∗ (K+Σy)

−1k∗,

(4)

where k∗ ∈ RN and K ∈ RN×N are calculated by:

k∗,i = k(xi,x∗) 1 ≤ i ≤ N, (5)
Kij = k(xi,xj) 1 ≤ i ≤ N, 1 ≤ j ≤ N. (6)

We call it log-GP because the observations are set to be 1 on
the surface points, which corresponds to log(1) = 0 in the
log-space of distance function.

B. Choice of Nonlinear Transform

The nonlinear transform r is given by the inverse of the sta-
tionary kernel as r(f̂) = k−1

S (f̂). Table I shows the nonlinear
transforms for commonly used kernels. For RBF and Matérn
3/2 kernels, it can be shown that this choice of nonlinear
transform coincides with Varadhan’s distance formula, and
hence asymptotically approximates the true distance function
with smaller lengthscale [15], [37]. Even in other cases, strong
empirical performance can be achieved [24].

C. Uncertainty Quantification

However, the resulting variance V[d̂] based on the first-order
approximation of this nonlinear transform does not reflect the
actual estimation error correctly.

Consider a function y = f(x),x ∈ N (µ,Σ) and its Taylor
expansion y ≈ f(µ) + ∇xf(µ)

⊤(x − µ), the covariance of
y can be approximated as

Cov[y] ≈ ∇xf(µ)
⊤Σ∇xf(µ). (7)

Therefore, to calculate SDF variance at x∗, one idea is
to approximate V[d̂] via Taylor expansion of the nonlinear
transform r, which is

V[d̂] ≈
(
dr/df̂

)2
V[f̂ ]. (8)

However, when x∗ is further away from the training set Dsurf,
V[f̂ ] → 1, and |dr/df̂ | → ∞ such that V[d̂] → ∞. This ap-
proximation does not provide a useful estimation variance that



Fig. 2: Overview of the proposed Kernel-SDF framework. The front-end estimates surface points and normals from sensor observations using
Bayesian Hilbert Map (BHM) and marching squares/cubes algorithm. The estimated surface points are then used as training data for the GPs
in the back-end. The back-end learns the SDF using multiple GPs, which predict the SDF and its gradient with uncertainty quantification
computed via softmin-based fusion.

reflects the actual estimation error correctly. Thus, although the
input uncertainty can be propagated to the output uncertainty
via GP, it does not work well in the log-GP framework for
SDF estimation.

In Appendix IX-C, we show that r(f̂) = k−1
S (f̂) is

approximately a type of soft-min function of the distances
to the surface points such that it can accurately estimate the
shortest distance, which leads to r(f̂) presented in Table I.

Based on this observation, we can estimate the SDF variance
by propagating the uncertainty in the surface point locations to
the uncertainty in the distance approximation via the soft-min
formulation. First, we approximate the shortest distance with
soft-min and the training set Dsurf = {xi, σ

2
xi
}Ni=1 as:

|d(x∗)| ≈ h(x∗, {xi}Ni=1) = s⊤z,

zi = ∥xi − x∗∥2 si =
exp(−αzi)∑N
i exp(−αzi)

, α > 0.
(9)

Then, assuming deterministic sign and united variance Vi =
σ2
xi

for each dimension of xi, we can calculate the variance
of d(x∗) and ∇d(x∗) approximately by

V[d(x∗)] ≈
N∑
i=1

∥∇xih∥
2
2 Vi, (10)

V[∇kd(x∗)] ≈
N∑
i=1

∥∥∇xi
gk(x∗, {xi}Ni=1)

∥∥2
2
Vi, (11)

where ∇xi
h = −si(αs⊤z − αzi + 1)(x∗ − xi)/zi,

g(x∗, {xi}Ni=1) = ∇x∗h(x∗, {xi}Ni=1). For more details,
please check Appendix IX-D. The merit of this approximation
is that the uncertainty in the surface point locations are directly
propagated to the uncertainty in the distance approximation.

V. SURFACE ESTIMATION FRONTEND

The role of the surface estimation front-end is to provide
reliable estimates of on-surface points, their uncertainty, and
optionally the corresponding normals. We use the Bayesian
hilbert map (BHM) [34] for this purpose, although other front-
ends may also be used.

BHM represents a continuous occupancy field P (y | x) by
using a set of M hinge points X̃ with weights w to do kernel
regression in the Hilbert space:

P (y | x,w) = σ
(
(2y − 1)w⊤ϕ(x)

)
, (12)

where ϕ(x) = [k(x, x̃1), · · · , k(x, x̃M ), 1]⊤ is a vector of ker-
nel values, k(·, ·) is RBF kernel, and σ is the sigmoid function.
A probabilistic estimate of the weight w is maintained as a
Gaussian random variable w ∼ P (w) = N (µ,Σ), so that the
occupancy probability is given by:

P (y | x) =
∫

P (y | x,w)P (w)dw. (13)

A. BHM Update

To create or update the BHM, a dataset DBHM =
{xk, yk}Kk=1 is generated from the sensor measurement St =
(Rt,ot,Pt) by sampling occupied samples as (Rtpi + ot, 1)
and free-space samples as (λRtpi+ot, 0) for λ ∼ U(0, 1) and
∀pi ∈ Pt. Given the dataset DBHM, the update is performed
using an expectation-maximization (EM) iteration by forming
a lower bound around an output ξn. The E-step updates the
mean µ and covariance Σ of w as:

Σ−1
t = Σ−1

t−1 +

K∑
k=1

∣∣∣∣∣1/2− σ(ξk)

ξk

∣∣∣∣∣ϕkϕ
⊤
k , (14)

µt = Σt

[
Σ−1

t−1µt−1 +

K∑
k=1

(yk − 1/2)ϕk

]
, (15)

and the M-step updating the lowerbound parameter ξ as:

ξk =

√
ϕ⊤

k Σtϕk +
(
ϕ⊤

k µt

)2
(16)

with ξk emperically initialized to 0 or 1 for all k. Σ is
initialized to 105I and µ is set to µ1, µ > 0, indicating a
prior of being occupied everywhere. For readers interested in
the detailed derivation, please refer to Appendix IX-A.

B. Sign Prediction and Surface Point Extraction

Given the estimated BHM parameters µ and Σ, we can
predict the occupancy probability efficiently as presented in
Appendix IX-B1. However, for this work, we only need to
know the log-odds of occupancy at a query point x∗ as
lBHM(x∗) = µ⊤ϕ∗, which can be used to predict the sign
at x∗ as:

sign(x∗) =

{
+1, lBHM(x∗) < ϵ,

−1, otherwise,
(17)



(a) Voxel update order (b) Free voxel parallel generation

Fig. 3: Optimization applied to construct the tree efficiently. (a) we
update the free/occupied voxels in a sorted order that follows the
ray order, which has a higher CPU cache hit rate. (b) to generate
the proposed ordering, a parallelism with stride-2 reduction is used,
where each thread computes voxels to update for its batch of rays
(in parallel), then each odd thread (2i − 1) merges results from its
paired even thread (2i) (parallel stride-2 reduction), and finally all
the results from the odd threads are merged into thread 0 one by one
(sequential).

where ϵ ∈ R is the decision boundary that can be learned from
data online with St using exponential moving average:

ϵ← (1− α)ϵ+
α

K

K∑
k=1

µ⊤
t ϕk, α ∈ (0, 1], (18)

where K is the number of hit samples in St. More discussion
about the sign prediction can be found in Appendix IX-B2.

To recover the surface points {xi}i, we run marching
squares/cubes algorithm [38] on a grid of log-odds values
predicted by the BHM to extract the ϵ-level set. The marching
process is performed only at hit grid cells and their neighbor
cells to improve efficiency. For each extracted surface point
xi, we compute its uncertainty as:

σ2
xi

= β|lBHM(xi)− ϵ|, (19)

where β > 0 is a hyperparameter and ϵ is the surface logodds
learned online as (18). Optionally, we can also compute the
surface normal at xi from the gradient of lBHM(x) as shown
in Appendix IX-B3.

VI. HIERARCHICAL STORAGE OF OCCUPANCY AND SDF

The computational complexity of kernel-based continuous
surface mapping methods scales quadratically (2D) or cubi-
cally (3D) as the size of the environment grows. To miti-
gate this, we propose a hierarchical data structure built on
occupancy quadtrees/octrees to subdivide the workspace, in
order to bound the computational complexity. The main idea
is to build local submaps and GPs that correspond to occupied
nodes at particular depths of the tree. And for free space, we
only need to store the occupancy log-odds values for sign
prediction in the nodes without building local submaps, which
significantly reduces the number of local submaps and the
overall computational complexity.

A. Octree Construction

We define an occupancy spatial hierarchical tree as a rooted
tree T = (V, E) of max depth Dtree and resolution r. Each

(a) Sample generation for BHMs (b) Weight sync between BHMs

Fig. 4: (a) Sample generation for BHMs. For each ray that hits
within or intersects with the sampling region of a BHM, we generate
occupied and free samples for updating the BHM. (b) Weight sync
between neighboring BHMs. The hinged points near the boundary
of a BHM are also hinged points of its neighboring BHMs. Hence,
when updating the BHM parameters, we sync the weights of these
shared hinged points between neighboring BHMs to guarantee the
consistency of occupancy prediction.

voxel v ∈ V at depth d is indexed by its discrete coords k ∈
Zn
≥0, centered at c(v) = sv⌊(k − 2Dtree−1)/2Dtree−d⌋ + 0.5sv

with size sv = r2Dtree−d, and stores a log-odds value ltree(v).
Therefore, at position x∗, we obtain the log-odds by:

l(x∗) =

{
lBHM(x∗), ∃c, ∥c− x∗∥∞ < r2Dtree−DBHM−1,

ltree(v∗), otherwise,
(20)

where c is the center of a local BHM and v∗ is the leaf voxel
that contains x∗.

It is critical to make the tree construction with occupancy
update efficient and fast. Based on Octomap [1], we extend
the octree implementation to a quadtree implementation for 2D
specifically. Further, the implementation is deeply optimized
to make sure the occupancy update is fast. As shown in Fig.
3a, we update the voxels in a sorted along-ray order, which
is critical to make the update more efficient because when a
free voxel is updated, its neighboring voxels are more likely
to be updated. This locality of voxel update is essential to
achieve a higher CPU cache hit rate for better performance.
While the order of occupied voxels is obvious, we implement
an algorithm demonstrated in Fig. 3b to efficiently generate
the free voxels in the sorted order.

B. Management of Local BHMs

For each occupied voxel at depth DBHM < Dtree, we
build a local BHM for surface estimation. Each local BHM
only covers a small area near the surface, which significantly
reduces the computational complexity compared to building
a global BHM for the whole environment. We define a local
BHM B as a tuple B = (µ,Σ, {x̃i}Mi=1, c, sB), where µ and
Σ are the BHM parameters, {x̃i}Mi=1 are the hinged points,
c ∈ Rn is the center position, and sB ∈ R>0 is the size of
the BHM. The M = mn hinged points are uniformly placed
in the BHM with spacing ∆ = sB/m.

While the splitting of the environment into multiple local
BHMs significantly reduces the computational complexity, it
also brings the issue of maintaining the consistency between
neighboring BHMs. To address this, we propose to overlap
neighboring BHMs by the same margin ∆ as hinge point



spacing, so that the surface near the boundary of a BHM can
be better captured and synced with neighbors. So, the map size
is set to sB = r2Dtree−DBHM + 2∆. To ensure accurate updates
of weights near the boundary, we consider a sampling area of
size αs centered at c with α > 1 when generating the dataset
DBHM from the sensor measurement St for updating a BHM,
as shown in Fig. 4a.

The overlapping regions between BHMs must be consis-
tent. Therefore, we propose a weight sync strategy between
neighboring BHMs. Three different cases must be considered,
as shown in Fig. 4b: (1) core weights that are not shared with
any neighboring BHMs, (2) managed weights that are shared
with neighboring BHMs but owned by the current BHM,
and (3) unmanaged weights that are shared with neighboring
BHMs but owned by the neighboring BHMs. When updating
the BHM parameters, we sync the managed weights to the
corresponding unmanaged weights of neighboring BHMs to
guarantee the consistency of occupancy prediction. In addition
to improving the consistency, this weight sync strategy also
helps the convergence of BHMs since the learned surface
geometry is broadcasted to neighboring BHMs.

C. Management of Local Log-GPs

In addition to creating local BHM for the occupied voxels at
depth DBHM, we also train the corresponding local GP for SDF
prediction according to Sec. IV. Similarly, the splitting of a
single global GP into multiple local GPs significantly reduces
the computational complexity. To guarantee the consistency
of SDF prediction between neighboring GPs, we overlap the
bounding boxes for collecting surface points for training the
local GPs by setting the box size to sGP = βsB, β > α.
With the consistency of prediction between neighboring GPs,
we can simply fuse the SDF predictions from the K nearest
multiple GPs by taking the minimum absolute value as:

d̂(x∗) = sign(x∗)min
k

r
(
f̂k

)
, (21)

where f̂k is the log-distance prediction from the k-th GP. And
the corresponding uncertainty is computed with the selected
GP’s training set Dsurf

k∗
according to Sec. IV-C. To efficiently

find the GPs for fusion, we maintain a Kd-tree of the positions
of all local GPs, for which the position is defined as the
running meaning of surface points used for training the GP.
Then, at a query point x∗, we can efficiently find the K nearest
GPs for fusion.

D. Priority Based Update

To get real-time performance, the update and test of BHMs
and GPs must be done in an efficient manner. The main idea is
to delay the surface extraction from BHMs, the update of GP
training data buffers, and the training of GPs until necessary,
so that we can avoid unnecessary computation for BHMs
and GPs. To make sure the system runs in real-time but also
remains responsive to the latest observation and query without
sacarificing accuracy, we introduce three priority queues for
managing the update of BHMs and GPs, as shown in Fig.
2. Basically, frequently queried GPs get higher priority to

be updated and re-trained. These GPs’ data buffers thus get
updated first. Besides, BHMs in the queue with the oldest
marching request timestamps are processed first because they
are more likely to be unchanged in the near future. Due to the
limited space, we leave the details in Appendix IX-E

VII. EXPERIMENTS

In this section, we compare Kernel-SDF with four baselines:
Voxblox [11], FIESTA [13], iSDF [20], and VDB-GPDF [28].
We quantitatively evaluate the quality of mesh reconstruction
and the accuracy of SDF prediction on three datasets: the
Replica dataset [39], the Cow and Lady dataset [11], and the
Newer College dataset [40]. We use the axial noise model
σ = kz2(k = 0.0025) [41] to add per pixel noise to the
synthesized depth images of the Replica dataset. For the
detailed experiment setup and metric definition, please refer
to Appendix IX-F. We first compare the mesh reconstruction
quality of all methods in Sec. VII-A. Then, we compare
SDF prediction accuracy in Sec. VII-B. Finally, we dicuss the
computational time of all methods (Sec. VII-C), and verify
the consistency between the SDF error and the SDF variance
estimated by our method in Sec. VII-D. In addition, we
demonstrate a real-world robot path planning application using
Kernel-SDF in Sec. VII-F.

A. Reconstruction Accuracy

As shown in Figures 5, 6, and 7, our method produces
high-quality mesh reconstructions that closely resemble the
ground truth models across all three datasets. In contrast, the
baseline methods exhibit various artifacts and inaccuracies in
their reconstructions. For instance, when tested on the Replica
dataset with relatively low noise, Voxblox [11], FIESTA [13]
and VDB-GPDF [28] tend to produce block-like artifacts due
to their voxel-based representations, while iSDF shows over-
smooth mesh results. However, as the sensor noise increases
in real world datasets like Cow and Lady and Newer College,
the performance of these baselines degrades significantly,
resulting in incomplete or distorted meshes. For example, due
to the discrete occupancy grid used by FIESTA, the extracted
meshes have low completeness, missing fine details. Voxblox
and VDB-GPDF also have the similar issues due to their
reliance on regular grids for the near surface representation.
iSDF, while shows better noise robustness, still produces over-
smoothed meshes that lack detail. We also quantitatively eval-
uate the mesh reconstruction quality and summarize the results
in Table II. The results show that our method achieves the best
or the second-best performance across almost all metrics and
datasets. Overall, our method consistently outperforms these
baselines by effectively handling sensor noise and preserving
fine details in the reconstructed meshes.

B. SDF Accuracy

We evaluate the SDF prediction accuracy of all methods
using the Mean Absolute Error (MAE) metric for both SDF
values and SDF gradients. We further categorize the evaluation
points into three regions: "All" points in the environment,



TABLE II: Mesh reconstruction metrics on the Replica dataset [39], the Cow and Lady dataset (C.L. for the scene and Cow for the cow
only) [11], and the Newer College (N.C.) dataset [40]. When computing the ratio, δ = 5cm, except for the Newer College dataset, δ = 20cm.
The best and second best results are bold and underlined, respectively.

Metric Method room 0 room 1 room 2 office 0 office 1 office 2 office 3 office 4 C.L. Cow N.C.

F1 Score [< δ]% ↑

Ours 95.81 97.33 97.47 98.26 96.60 95.17 93.52 94.54 83.62 92.81 75.85
FIESTA 76.71 76.49 78.15 77.64 82.43 75.45 79.73 78.19 19.37 18.03 54.73
Voxblox 92.00 94.77 92.64 93.72 94.23 89.50 86.58 89.94 70.30 79.38 54.14
iSDF 87.85 85.11 90.64 89.80 91.37 87.53 87.52 91.21 78.33 91.84 70.15
VDB-GPDF 60.06 57.20 58.45 60.99 56.47 58.00 54.78 56.92 78.37 91.08 61.94

Recall [< δ]% ↑

Ours 92.96 95.53 95.43 97.53 95.54 92.17 90.13 90.07 97.49 98.96 75.06
FIESTA 77.56 78.33 81.04 81.33 82.00 77.17 81.15 78.09 19.89 17.27 52.60
Voxblox 88.17 91.81 90.79 92.18 90.62 85.67 82.21 84.94 72.71 78.03 56.64
iSDF 82.88 77.54 88.64 85.51 86.30 83.30 85.46 90.12 82.70 93.47 86.24
VDB-GPDF 58.03 55.50 57.29 60.30 55.36 56.55 51.47 55.12 80.73 91.61 62.44

Precision [< δ]% ↑

Ours 98.85 99.21 99.61 98.99 97.67 98.36 97.18 99.47 73.21 87.37 76.65
FIESTA 75.87 74.73 75.47 74.28 82.85 73.81 78.36 78.28 18.87 18.86 57.03
Voxblox 96.18 97.94 94.56 95.31 98.13 93.69 91.44 95.55 68.05 80.77 51.84
iSDF 93.45 94.33 92.74 94.56 97.08 92.21 89.68 92.33 74.40 90.27 59.12
VDB-GPDF 62.24 59.01 59.66 61.69 57.63 59.52 58.53 58.85 76.14 90.56 61.45

Completion Ratio
[< δ]% ↑

Ours 92.44 95.35 95.22 97.50 95.43 91.63 89.33 89.01 93.50 97.28 74.63
FIESTA 78.05 79.32 82.34 82.94 81.82 78.16 81.80 78.03 23.99 9.67 48.61
Voxblox 87.09 91.26 90.41 91.92 89.85 84.33 80.21 83.06 74.46 77.26 60.31
iSDF 80.69 72.68 88.12 83.98 84.59 81.51 84.74 89.88 84.43 93.69 90.57
VDB-GPDF 54.98 52.69 55.53 59.39 53.53 54.26 44.82 52.08 81.83 91.70 63.03

Completion [cm] ↓

Ours 2.84 2.35 2.33 2.07 2.26 3.02 2.99 3.50 2.58 2.57 14.23
FIESTA 3.98 3.16 2.88 2.73 4.71 4.40 3.69 3.98 18.68 25.77 71.87
Voxblox 3.69 2.16 2.31 1.71 2.07 3.52 4.37 4.38 4.44 5.77 21.30
iSDF 5.63 8.72 2.62 4.14 3.98 5.62 3.03 2.23 3.12 2.24 9.75
VDB-GPDF 5.52 4.82 3.87 3.52 4.12 4.80 13.78 5.07 3.68 3.05 40.57

Accuracy [cm] ↓

Ours 1.95 1.81 1.93 1.89 1.86 1.97 1.96 2.00 4.69 3.24 13.99
FIESTA 3.57 3.19 3.18 3.43 3.11 4.23 3.51 3.22 26.67 16.58 21.02
Voxblox 1.74 1.14 1.50 1.22 0.81 1.68 2.16 1.67 4.98 3.64 25.44
iSDF 2.04 1.60 1.52 1.64 1.11 1.89 2.30 1.83 4.66 2.75 31.66
VDB-GPDF 3.42 3.34 3.17 3.30 3.55 3.32 3.55 3.37 4.94 3.28 18.56

Chamfer-L1 [cm] ↓

Ours 2.40 2.08 2.13 1.98 2.06 2.49 2.48 2.75 3.64 2.91 14.11
FIESTA 3.77 3.17 3.03 3.08 3.91 4.31 3.60 3.60 22.68 21.17 46.45
Voxblox 2.72 1.65 1.90 1.47 1.44 2.60 3.26 3.02 4.71 4.70 23.37
iSDF 3.83 5.16 2.07 2.89 2.55 3.75 2.67 2.03 3.89 2.49 20.71
VDB-GPDF 4.47 4.08 3.52 3.41 3.83 4.06 8.67 4.22 4.31 3.17 29.57

(a) Ground Truth (b) Ours (c) FIESTA [13]

(d) Voxblox [11] (e) iSDF [20] (f) VDB-GPDF [28]

Fig. 5: Qualitative comparison of mesh reconstruction on the Replica
dataset [39]. Our method achieves the best visual quality, accuracy
and completeness compared to the baselines. For example, the
textures of the bed sheets are better preserved in our reconstruction.

Ours FIESTA Voxblox iSDF VDB-GPDF

Fig. 6: Qualitative comparison of mesh reconstruction of the cow
in Cow&Lady dataset [11]. Our method successfully recovers the
detailed geometry of the cow, such as the horns, ears, and legs, which
are missed in the baselines’ reconstructions.

(a) Ground Truth (b) Ours (c) FIESTA [13]

(d) Voxblox [11] (e) iSDF [20] (f) VDB-GPDF [28]

Fig. 7: Qualitative comparison of mesh reconstruction on the Newer
College dataset [40].

"Near" points within 0.2m of the surface, and "Far" points
beyond 0.2m from the surface. To exclude the influence of
sign due to occupancy misclassification (e.g. by FIESTA),
we compute the SDF MAE using the absolute values of
the predicted and ground truth SDFs. Tables III summarizes
the SDF prediction results across all datasets. Our method
consistently achieves the lowest SDF MAE and gradient
MAE across almost all datasets and regions. Although FI-
ESTA shows competitive accuracy performance on the Replica
dataset, its accuracy drops significantly on the Cow and Lady
and Newer College datasets due to sensor noise. Voxblox
and iSDF generally exhibit higher SDF MAE and gradient
MAE, indicating less accurate distance field predictions due
to their voxel-based representations and smoothing effects.
VDB-GPDF performs better than Voxblox and iSDF. How-
ever, its gradient MAE is the highest among all methods,
indicating poor gradient estimation. In the "Near" region,



(a) Predicted SDF (b) SDF Error (c) SDF Variance

Fig. 8: Demonstration of the consistency between the SDF error and
the SDF variance estimated by our method on a slice of Replica
office3 [39]. (a) shows the predicted SDF values on the slice, (b)
shows the absolute SDF error compared to the ground truth, and
(c) shows the estimated SDF variance. We can observe that regions
with higher SDF error correspond to regions with higher estimated
variance, indicating that our method effectively captures uncertainty
in SDF predictions.

SDF accuracy is particularly important for applications such
as robot navigation and manipulation, where precise distance
estimates to nearby surfaces are crucial. In the "Far" region,
accurate SDF predictions help in understanding the overall
environment structure and planning long-range paths. Besides,
accurate gradient estimates are helpful for motion planning
algorithms that rely on gradient information to navigate around
obstacles. Our method’s superior performance in both SDF
values and gradients demonstrates its effectiveness in capturing
the underlying geometry of the environment.

C. Computation Efficiency

We assess the computational efficiency of all methods by
measuring the average time taken for SDF updates per frame
and SDF prediction at 1k positions during online operation.
Table IV shows the timing results across all datasets. Our
method consistently achieves real-time performance with av-
erage update times at round 150ms per frame at different
scene scales, making it suitable for online applications. Al-
though Voxblox runs fast in building the TSDF map, its SDF
integration is very slow due to the large number of voxels
that need to be updated. FIESTA runs the SDF integration
the fastest by using priority queues to reduce the number of
voxel updates. However, as we have shown in Sec. VII-A and
VII-B, its accuracy is not satisfactory in noisy environments.
iSDF is also slow because it needs multiple iterations to
converge for each frame and takes time to backward propagate
in order to compute the gradients analytically. VDB-GPDF
is the most similar to our method in terms of the GP-based
SDF representation. However, due to its reliance on the VDB
structure for spatial partitioning and storage, its update time
is significantly higher than ours. Overall, our method strikes a
good balance between computational efficiency and accuracy,
making it a practical choice for real-time SDF mapping in
robotics applications.

D. Error-Uncertainty Consistency

One of the key advantages of our method is its ability to
quantify uncertainty in SDF predictions through the estimated
variance. To validate the consistency between the predicted
SDF variance and the actual SDF error, we show the SDF
error and variance on a slice of the Replica office3 dataset
[39] in Fig. 8. We observe that regions with higher SDF error

(a) Mesh Metrics vs. Sensor Noise (b) SDF Metrics vs. Sensor Noise

Fig. 9: Ablation study on the effect of sensor noise on (a) mesh
reconstruction metrics and (b) SDF metrics on the Replica room0
dataset [39]. The results demonstrate that our method maintains
robust performance even as sensor noise increases, with only a
gradual degradation in both mesh quality and SDF accuracy.

(a) Jackal robot in the environment (b) SDF and safe bubble cover

Fig. 10: Using Kernel-SDF to enable safe bubble cover [42] navi-
gation. (a) A Clearpath Jackal robot equipped with a LiDAR sensor
navigating in a laboratory environment. (b) Visualization of the real-
time SDF as a heatmap, the safe bubble cover (union of red circles)
generated from Kernel-SDF, and the reference trajectory (green line).

correspond to regions with higher estimated variance, indicat-
ing that our method effectively captures uncertainty in SDF
predictions. This consistency is crucial for applications such
as robot navigation and manipulation, where understanding the
confidence in distance estimates can inform decision-making
and risk assessment.

E. Ablation Study on Sensor Noise Handling

To evaluate the effectiveness of our method in handling
sensor noise, we conduct an ablation study by comparing the
metrics with different sensor noise levels on Replica room0
dataset [39]. We vary the noise level by adjusting the axial
noise parameter k in the noise model σ = kz2 and keep other
algorithm parameters fixed. Fig. 9 shows the results of mesh
reconstruction metrics (Fig. 9a) and SDF metrics (Fig. 9b) as
the sensor noise increases. The results demonstrate that our
method maintains robust performance even as sensor noise
increases, with only a gradual degradation in both mesh quality
and SDF accuracy. This indicates that our surface estimation
front-end using Bayesian Hilbert Maps effectively mitigates
the impact of sensor noise, leading to reliable SDF mapping
in noisy environments.



TABLE III: SDF reconstruction metrics on the Replica dataset [39], the Cow and Lady dataset (C.L. for the scene and Cow for the cow
only) [11], and the Newer College (N.C.) dataset [40].

Metric Region Method room 0 room 1 room 2 office 0 office 1 office 2 office 3 office 4 C.L. Cow N.C.

SDF MAE
[cm] ↓

All

Ours 1.994 1.676 1.719 1.617 1.715 1.947 1.850 2.068 4.699 2.547 24.009
FIESTA 2.175 2.364 2.418 2.662 2.461 2.234 2.344 2.378 15.344 15.092 37.244
Voxblox 3.128 2.539 2.733 3.017 2.725 3.470 3.740 3.077 6.297 4.000 62.917

iSDF 3.745 4.230 4.259 3.890 4.226 5.094 4.245 4.147 7.327 4.258 64.304
VDB-GPDF 2.925 2.900 2.778 2.902 2.968 2.861 3.176 2.929 4.683 3.056 21.783

Near

Ours 2.454 1.955 1.940 1.732 1.909 2.264 2.253 2.695 3.427 2.513 10.998
FIESTA 2.121 2.046 2.040 2.233 1.926 1.848 1.974 2.077 10.591 13.582 32.209
Voxblox 2.780 2.153 2.233 2.196 2.172 2.852 3.409 2.959 4.287 3.404 19.634

iSDF 3.649 3.632 3.295 3.206 3.646 3.821 3.397 3.301 4.258 3.595 6.540
VDB-GPDF 2.847 2.924 2.802 2.827 2.936 2.770 3.136 2.870 3.938 3.025 20.693

Far

Ours 1.676 1.454 1.565 1.521 1.524 1.716 1.531 1.645 5.336 2.574 25.214
FIESTA 2.205 2.574 2.656 2.961 2.898 2.461 2.563 2.545 17.753 16.331 37.744
Voxblox 3.368 2.845 3.081 3.711 3.270 3.918 4.002 3.158 7.338 4.471 67.322

iSDF 3.811 4.705 4.932 4.466 4.797 6.016 4.918 4.718 8.864 4.802 69.652
VDB-GPDF 3.486 2.620 2.606 3.778 3.585 3.472 3.511 3.320 7.066 3.272 22.739

Grad. MAE
[rad] ↓

All

Ours 0.159 0.138 0.166 0.161 0.140 0.166 0.161 0.161 0.501 0.295 0.311
FIESTA 0.220 0.207 0.184 0.216 0.250 0.198 0.224 0.180 1.141 1.093 0.498
Voxblox 0.230 0.195 0.222 0.251 0.190 0.271 0.279 0.232 0.477 0.338 0.777

iSDF 0.358 0.200 0.339 0.276 0.279 0.286 0.292 0.346 0.569 0.400 0.667
VDB-GPDF 0.998 1.051 1.022 1.050 1.165 0.998 1.032 0.980 1.066 0.982 1.176

Near

Ours 0.181 0.171 0.174 0.201 0.180 0.189 0.198 0.180 0.671 0.397 0.934
FIESTA 0.304 0.276 0.230 0.313 0.323 0.253 0.300 0.232 1.329 1.224 1.398
Voxblox 0.282 0.183 0.204 0.259 0.179 0.301 0.336 0.299 0.679 0.466 1.435

iSDF 0.290 0.176 0.247 0.229 0.206 0.222 0.257 0.277 0.679 0.395 1.309
VDB-GPDF 1.070 1.101 1.088 1.099 1.193 1.075 1.093 1.057 1.116 1.030 1.413

Far

Ours 0.149 0.121 0.162 0.141 0.115 0.155 0.143 0.153 0.439 0.230 0.288
FIESTA 0.182 0.171 0.162 0.166 0.203 0.171 0.189 0.158 1.050 0.985 0.412
Voxblox 0.208 0.201 0.230 0.246 0.198 0.257 0.256 0.205 0.406 0.258 0.720

iSDF 0.389 0.214 0.389 0.303 0.330 0.319 0.309 0.377 0.528 0.403 0.632
VDB-GPDF 0.613 0.622 0.627 0.643 0.762 0.603 0.684 0.590 0.907 0.644 0.968

TABLE IV: Timing metrics. Results are reported as the average per-
frame processing time (FPT) and prediction time for 1k points (QT-
1k) on the Replica room0 [39], the Cow and Lady dataset [11] and
the Newer College dataset [40]. The best and second best results are
bold and underlined, respectively. Timing was measured on a system
with an Intel i9-14900K CPU and an NVIDIA RTX 3090 GPU.

Method Replica Cow & Lady Newer College
FPT (s) QT-1k (ms) FPT (s) QT-1k (ms) FPT (s) QT-1k (ms)

Ours 0.19 2.80 0.11 4.43 0.17 3.04
VDB-GPDF 0.68 10.66 0.10 8.29 0.26 10.16
Voxblox 21.23 103.81 4.48 99.42 94.01 85.20
iSDF 2.49 0.29 0.84 0.27 1.38 0.28
FIESTA 0.05 0.05 0.02 0.03 0.28 0.04

F. Path Planning Case Study through Kernel-SDF
One practical application of accurate, uncertainty-quantified

and real-time SDF mapping is in robot path planning. In this
case study, we demonstrate how Kernel-SDF can be utilized
to enable safe navigation for a mobile robot using the bubble
cover method [42]. In this experiment, we demonstrate the use
of fast, accurate SDF mapping for robot path planning. Lee et
al. [42] showed that an SDF can be used to construct a safe
bubble cover, where each bubble is centered at a point x ∈ Rn

and has the radius equal to the distance-field value at that point
minus a safty margin, which could be a function of the SDF
uncertainty. Using sampling-based planning methods, we can
recover a connected chain, defined as the union of overlapping
bubbles, that contains both the start and goal positions. Once
this chain is obtained, planning can be performed safely within
the free space it defines. Fig. 10a shows a Clearpath Jackal
operating in a laboratory environment with its LiDAR enabled.
Fig. 10b visualizes the real-time SDF values as a heatmap, the
resulting safe bubble cover (union of the red and blue circles),
and the reference trajectory as the green line.

VIII. CONCLUSION

In this work, we presented Kernel-SDF, a novel framework
for real-time SDF learning using kernel regression with uncer-

tainty quantification. By leveraging Bayesian Hilbert Maps for
surface estimation and Gaussian Process regression for SDF
prediction, our method achieves high accuracy and efficiency
in reconstructing the environment as a signed distance func-
tion. The proposed hierarchical tree structure for managing
multiple local BHMs and GPs enables scalable and real-
time performance, making it suitable for online applications
in robotics. And the uncertainty quantification provided by
our method allows for better risk assessment in downstream
tasks such as path planning and obstacle avoidance. Extensive
experiments on synthetic and real-world datasets demonstrate
that Kernel-SDF outperforms existing state-of-the-art methods
in terms of reconstruction quality and prediction accuracy with
good balance of computational speed. Besides, the BHM-
based surface estimation properly handles sensor noise and
dynamic environment changes, further enhancing the robust-
ness of our approach.
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IX. APPENDIX

A. EM Algorithm for Updating BHM
Readers can refer to [34], [36] for more details about

the Bayesian Hilbert Map (BHM). Here, we provide a brief
derivation of the EM algorithm for updating the BHM model
parameters, µ and Σ.

Given a dataset D = {(xk, yk)}Kk=1 of K generated samples
at time t, our goal is to update the weights w of the model
such that we get the posterior distribution:

P (w|D) = P (D|w)P (w)

P (D)
, (22)

where P (w) is the prior distribution of the weights, and the
likelihood is given by:

P (D|w) =

K∏
k=1

P (yk|xk,w)

=

K∏
k=1

σ(−ykw⊤ϕ(xk)), yk ∈ {−1, 1}.

(23)

The marginal likelihood P (D) is intractable, so we resort
to approximate inference methods. Our goal to maximize the
log marginal likelihood:

logP (D) = log

∫
P (D|w)P (w)dw

= log

∫
Q(w)

P (D|w)P (w)

Q(w)
dw

≥
∫

Q(w) log
P (D|w)P (w)

Q(w)
dw,

↑ Jensen’s inequality

(24)

where Q(w) is an approximate posterior distribution of the
weights.

Since P (D|w) is product of sigmoids that contains the
weights w inside, we use the variational bound [36] to get
a looser lower bound:

σ(r) ≥ σ(ξ) exp

(
r − ξ

2
+ λ (ξ)

(
r2 − ξ2

))
,

where ξ is a variational parameter and λ(ξ) = 1
2ξ

(
1
2 − σ(ξ)

)
.

Using the idea of Sequential BHM EM update [34], we
assume a Gaussian prior P (w) = N (w|µt−1,Σt−1) and a
Gaussian approximate posterior Q(w) = N (w|µt,Σt) for
the weights. Hence, we can write the variational lower bound
of the log marginal likelihood as:

L = EQ [logP (D|w)] + EQ [logP (w)]− EQ [logQ(w)]

≥
K∑

k=1

EQ

[
log σ(−ykw⊤ϕ(xk))

]
+ EQ [logP (w)]− EQ [logQ(w)]

≥
K∑

k=1

(
log σ(ξk)−

ξk
2

+
EQ [rk]

2
+ λ(ξk)

(
EQ

[
r2k
]
− ξ2k

))
+ EQ [logP (w)]− EQ [logQ(w)]

=

K∑
k=1

(
log σ(ξk)−

ξk
2
− ξ2kλ(ξk) + (yk −

1

2
)µ⊤

t ϕ(xk)

)

+

K∑
k=1

(
λ(ξk)ϕ

⊤(xk)
(
Σt + µtµ

⊤
t

)
ϕ(xk)

)
+

1

2
tr
((
Σ−1

t −Σ−1
t−1

)
Σt

)
+

1

2
log

|Σt|
|Σt−1|

− 1

2

(
µt − µt−1

)⊤
Σ−1

t−1

(
µt − µt−1

)
,

where rk = ykw
⊤ϕ(xk), yk ∈ {0, 1}.

To maximize the lower bound L, we take derivatives with
respect to the variational parameters {ξk}Kk=1 and µt, and set
them to zero. This results in the following update equations:

a) E-Step: ∂L/∂µt = 0 leads to

µt = Σt

(
Σ−1

t−1µt−1 +

K∑
k=1

(
yk −

1

2

)
ϕ(xk)

)
,

Σ−1
t = Σ−1

t−1 +

K∑
k=1

∣∣∣∣∣1/2− σ(ξk)

ξk

∣∣∣∣∣ϕ(xk)ϕ
⊤(xk),

which are the same as (14) and (15).
b) M-Step: ∂L/∂ξk = 0 leads to

ξk =
√
ϕ⊤(xk)

(
Σt + µtµ

⊤
t

)
ϕ(xk), ∀k = 1, . . . ,K,

which is the same as (16). Note that ξk,t = ξk, where t is
omitted for simplicity. We suggest initialize ξk to 0.0 or 1.0
for all k (Empirically, both work well).

Practical Optimization for the Implementation: For each
generated dataset D, usually 1 to 2 EM iterations are sufficient
for convergence. To make the algorithm more efficient, we set
ϕm(xk) = 0 if its value is smaller than a threshold (e.g., 10−3)
so that we can speed up the computation by the sparsity of
ϕ(xk). Besides, the update of µ and Σ needs matrix inversion
of Σ−1

t , which is handled by Cholesky decomposition for
efficiency and numerical stability.

B. Approximation of BHM Prediction
1) Mean Occupied Probability: With enough iterations,

we get the converged µ and Σ, and predict the occupancy
probability at x∗ by (12):

g(x∗,w) = P (y = 1 | x∗,w) = σ(w⊤ϕ∗), (25)

where w ∼ N (µ,Σ), ϕ∗ = ϕ(x∗). Let g∗(w) = g(x∗,w).
Then, the mean of g∗(w) is

E[g∗(w)] = P (y = 1 | x∗) =

∫
σ
(
w⊤ϕ∗

)
P (w)dw. (26)

However, we cannot compute the above integral analytically.
One way of approximation is to collect N samples of w from
N (µ,Σ), so that

E[g∗(w)] = P (y = 1 | x∗) ≈
1

N

N∑
i=1

σ(w⊤
i ϕ∗). (27)

A faster and more accurate approximation is

E[g∗(w)] ≈ σ (h) , h =
µ⊤ϕ∗√

1 + π
8ϕ

⊤
∗ Σϕ∗

. (28)



Fig. 11: Surface points colored by their log-odds values from BHM.

Proof. We approximate the sigmoid function σ(x) with the
cumulative distribution function of the normal distribution,
Φ(λx), where λ =

√
π/8. Therefore,

P (y = 1 | x∗)

≈
∫

Φ(λw⊤ϕ∗)P (w)dw =

∫
Φ(λu)P (u)du

=

∫
Φ

v + µ⊤ϕ∗/
√
ϕ⊤

∗ Σϕ∗(
λ
√
ϕ⊤

∗ Σϕ∗

)−1

P (v)dv

= Φ


µ⊤ϕ∗/

√
ϕ⊤

∗ Σϕ∗√
1 +

(
λ
√
ϕ⊤

∗ Σϕ∗

)−2


= Φ

 µ⊤ϕ∗√
λ−2 + ϕ⊤

∗ Σϕ∗

 ≈ σ

 µ⊤ϕ∗√
1 + λ2ϕ⊤

∗ Σϕ∗


= σ

 µ⊤ϕ∗√
1 + π

8ϕ
⊤
∗ Σϕ∗

 ,

where u = w⊤ϕ∗ ∼ N
(
µ⊤ϕ∗,ϕ

⊤
∗ Σϕ∗

)
, v = u−µ⊤ϕ∗√

ϕ⊤
∗ Σϕ∗

∼
N (0, 1). And the following integral is used∫

Φ

(
w − a

b

)
P (w)dw = Φ

(
−a√
1 + b2

)
. (29)

To prove the above equation, let X ∼ N (a, b2) and Y ∼
N (0, 1) be independent random variables. Then,

P (X ≤ Y | Y = w) = P (X ≤ w) = Φ

(
w − a

b

)
, (30)

P (X ≤ Y ) =

∫
P (X ≤ Y | Y = w)P (w)dw

=

∫
Φ

(
w − a

b

)
P (w)dw.

(31)

Since P (X ≤ Y ) = P (X−Y ≤ 0) and X−Y ∼ N (a, b2+1),
P (X ≤ Y ) = Φ

(
−a√
1+b2

)
. Therefore, (29) holds.

When it converges, det(Σ) ≈ 0, we have

E[g∗(w)] ≈ σ
(
µ⊤ϕ∗

)
, (32)

where µ⊤ϕ∗ is the log-odds of occupancy at x∗.
2) Sign Prediction with BHM: When it comes to classify

occupancy for the sign prediction, we can use the following
decision rule:

sign(x∗) =

{
+1, µ⊤ϕ∗ < ϵ,

−1, otherwise,

where ϵ ∈ R is the decision boundary that can be learned from
data online with St using exponential moving average:

ϵt ← (1− α)ϵt−1 +
α

K

K∑
k=1

µ⊤
t ϕ(xk), α ∈ (0, 1],

where K is the number of hit surface samples in St and xk

is in the map frame.
Ideally, ϵ should be 0.0 if the sampled dataset D is balanced

and the BHM model converges. However, in practice, as shown
in Fig. 11 for occupied samples (x, 1), x is biased towards the
surface, which means ϵ should be a small positive value. In
addition, the number of occupied and free samples are affected
by the sensor’s field of view and its viewing direction relative
to the surface, which may cause much more free samples,
leading to a negative ϵ. Hence, we suggest learning ϵ online.

3) Gradient and Surface Normal Prediction: We can
also derive the gradient of (28) as

∇E[g∗(w)] = σ(h)σ(−h)∇xϕ∗∇ϕ∗h,

∇ϕ∗h =
1√

1 + π
8ϕ

⊤
∗ Σϕ∗

(
µ−

π
8µ

⊤ϕ∗Σϕ∗

1 + π
8ϕ

⊤
∗ Σϕ∗

)
,

(33)

where ∇xϕ∗ = −2γXdiag(ϕ∗), X = [x∗ − x̃1, · · · ,x∗ −
x̃M ,0] for the RBF kernel and M hinge points {x̃i}Mi=1.

When det(Σ) ≈ 0, the gradient of the occupancy probabil-
ity at x∗ is approximated as

v∗ ≈ σ(µ⊤ϕ∗)σ(−µ⊤ϕ∗)∇xϕ∗µ. (34)

The surface normal at x∗ is the opposite direction of v∗.
Since we do not care about the magnitude of v∗ when calculate
the surface normal, we have

n∗ = − z(µ)

∥z(µ)∥2
, z(µ) = ∇xϕ∗µ. (35)



C. Connection between Log-GP and Softmin
Assume we have only two points in the dataset {x1,x2} and

there is no noise σ2 = 0 so that the posterior of log distance
according to (4) is:

f∗ =

[
k(x∗,x1)
k(x∗,x2)

]⊤ [
1 k(x1,x2)

k(x1,x2) 1

]−1 [
α
α

]
, (36)

where α = 1 when x1 and x2 are surface points. Simplifying
the above equation leads to:

f∗ = α
k(x∗,x1) + k(x∗,x2)

1 + k(x1,x2)
, (37)

so that

log f∗ = logα+ log (1 + k12) + log(k∗1 + k∗2), (38)

where k12 = k(x1,x2), k∗1 = k(x∗,x1), and k∗2 =
k(x∗,x2). When α = 1 and the kernel scale is small enough,
k12 ≈ 0, we have

log f∗ ≈ log(k∗1 + k∗2) ≈ log (min(k∗1, k∗2)) , (39)

which shows that the log-GP posterior mean is approximately
a kind of softmin function when the kernel is exponential and
the scale is small enough.

Note that if α ̸= 1, i.e. x1 and x2 are not surface points, we
will not obtain (39) and the log-GP posterior mean will not be
the approximation of the unsigned distance function. Also, to
get a better approximation, we need to ensure that the kernel
scale is small enough so that k12 ≈ 0 and the surface point
closest to x∗ dominants the sum of the kernel evaluations.

However, it is challenging to set a small kernel scale for the
log-GP in practice, because a small kernel scale leads to small
k(x∗,xi) for all xi that are not very close to x∗, which causes
underflow issues in the implementation. To address this issue,
we propose to rewrite (4) as:[

f̂ ′(x∗)

∇f̂ ′(x∗)

]
=

[
k′⊤

∗
∇⊤

x∗
k′

∗

]
(K+Σy)

−11, (40)

where k′
∗ ∈ RN is calculated by:

k′∗,i = k′(xi,x∗) = γkS(∥xi − x∗∥2) 1 ≤ i ≤ N. (41)

Here, γ ∈ R+ is a scaling factor that can be tuned to
avoid underflow issues when using small kernel scales. In
practice, we set γ = exp

(
d2/(2l2)

)
for the RBF kernel

or γ = exp
(√

3d/l
)

for the Matérn 3/2 kernel, where
d = ∥x∗ − x1∥2. γ should be merged into the exponential
term of the kernel function to avoid underflow caused by the
exponent. Considering that surface points in Dsurf are usually
close to each other, this setting can effectively avoid underflow
issues. With this modification, the inverse transformation r(f̂ ′)
should also be changed accordingly. For the RBF kernel, we
have:

r(f̂ ′) =

√
−2l2

(
log f̂ ′ − log γ

)
=

√
−2l2 log f̂ ′ + d2.

(42)
For the Matérn 3/2 kernel, we have:

r(f̂ ′) = − l√
3

(
log f̂ ′ − log γ

)
= − l√

3
log f̂ ′ + d. (43)

D. SDF Gradient Variance Calculation
Based on the softmin approximation of (9), we can obtain

the approximation of the UDF gradient:

∇d(x∗) ≈ ∇x∗h(x∗, {xi}Ni=1) = g(x∗, {xi}Ni=1)

= V
(
αss⊤z− α diag(s)z+ s

)
,

V =
[
v1 · · ·vN

]
,vi =

x∗ − xi

zi
.

(44)

Therefore, assuming isotropic variance Vi for each di-
mension of xi, we can calculate the variance of ∇d(x∗)
approximately by Taylor expansion and get:

V[∇kd(x∗)] ≈
N∑
i=1

∥∥∇xi
gk(x∗, {xi}Ni=1)

∥∥2
2
Vi, 1 ≤ k ≤ n,

(45)
where

∇xi
g(x∗, {xi}Ni=1) =

αvi (li (vi −Vs) + si(vi − g))
⊤
+

li
zi

(
viv

⊤
i − I

)
,

li = si(αs
⊤z− αzi + 1).

(46)

E. Priority Based Update
In our Kernel-SDF framework, several operations take sig-

nificant time, including BHM EM update, BHM marching,
GP training data collection, and GP training. However, not all
operations need to be performed at every time step. Therefore,
we introduce a priority-based update scheme to efficiently
allocate computational resources to the most needed updates.

To maintain the responsiveness of the system to the latest
sensor data, BHM EM updates are performed at every time
step for all BHMs that have new sensor data. Newly created
BHMs also need to be marched immediately to get surface
points for its corresponding GP training data buffer update.
For all GP training operations, we delay them until they are
required for SDF prediction.

For other operations, we use priority queues to determine
the order of updates based on their necessity. In order to make
the system also responsive to the latest query trends (e.g., the
down-stream planner may focus on a specific area), each GP
has a query counter c0 that records how many times the GP
is requested for SDF prediction. The counter helps to reshape
the priority of GP training and data buffer updates. When a
GP is trained, its query counter is reduced by half. And the
query counter is capped to a maximum value (10000) to avoid
over-prioritization.

1) Marching Priority Queue: Note that a single EM
update of a BHM only affects a small portion of the surface
points. Especially for well-updated BHMs, the surface point
changes are even smaller. Hence, we first introduce a priority
queue for marching BHMs, which orders the BHMs by the
latest timestamp tB when a BHM is requested to update sur-
face estimation. The BHM with the oldest timestamp (smaller
tB) in the queue is processed first because it is more likely to
be unchanged in the near future:

smarch = tB ↓, (47)

where ↓ indicates smaller values have higher priority.



2) GP Data Buffer Update Queue: After marching a
BHM, its corresponding GP training data buffer needs to be
updated with the new surface points. However, it also takes
time to get significant changes of Dsurf for updating the GP.
And Dsurf is not required until the GP needs to be trained.
Therefore, we introduce a priority queue that orders the GPs
by the following score:

sbuffer update = c1(1 + η1c0) ↑, (48)

where c1 is the number of times the GP data buffer is
marked to be updated since the last update, η1 is a weight
parameter, and ↑ indicates larger values have higher priority.
c1 is increased by 1 each time the GP is marked to update its
data buffer after marching its corresponding BHM and reset
to 0 after the data buffer is updated. For newly created GPs,
we initialize c1 to cmax

1 exp(−γ∥cGP − ot∥2), where cGP is
the center of the GP training data collection bounding box, ot

is the current sensor origin, and γ > 0 is a decay parameter.
This initialization gives higher priority to GPs closer to the
sensor origin.

3) GP Training Queue: Similar to the GP data buffer
update, GP training is not required until SDF prediction is
requested. In addition, training a GP only makes sense when
its training data buffer has significant changes. Therefore, we
introduce another priority queue that orders the GPs by the
following score:

sGP train = c2(1 + η2c0) ↑, (49)

where c2 is the number of times the GP is marked to be trained
since the last training, η2 is a weight parameter, and ↑ indicates
larger values have higher priority. c2 is increased by c1 each
time the GP’s buffer is updated and reset to 0 after the GP
is trained. When the GP is trained, c0 is also halved in case
the GP is over-prioritized for future updates as the query trend
may change.

F. Experiment Details
1) Parameter Settings: For Kernel-SDF, we set the oc-

tree resolution to 0.08m, 0.05m and 0.7m for the Replica,
Cow&Lady, and Newer College datasets, respectively. The
local BHMs are placed at the depth Dtree − 1, which means
the local BHM bounding box size is twice the octree voxel
size. The number of hinge points per axis is set to 7 for the
Replica and Cow&Lady datasets, and 9 for the Newer College
dataset. The BHM kernel scale l is set to 0.016m, 0.013m and
0.11m for the three datasets, respectively. For the GP, we use
RBF kernel and set λ = 1

2l2 to 500, 300, and 250 for the three
datasets, respectively. For other parameters, please refer to our
released code.

For the baselines, we use the default parameters provided in
their released code except for necessary modifications to adapt
to the datasets. For example, iSDF [20] only supports image
input, so we convert the LiDAR scans of the Newer College
dataset to depth images using the camera intrinsic parameters

that give the same field of view as the LiDAR. We set the voxel
size of Voxblox and FIESTA to be 0.05m for the Replica and
Cow&Lady datasets, and 0.2m for the Newer College dataset
to get a better trade-off between accuracy and efficiency.

For our method and VDB-GPDF [28], a mesh is available
from the algorithm directly. For Voxblox [11], FIESTA [13],
and iSDF [20], we extract the mesh using the marching cubes
algorithm [38] with the voxel size as the marching cubes
resolution, except for iSDF, where we use a resolution of
0.02m for the Replica and Cow&Lady datasets and 0.1m for
the Newer College dataset.

2) Mesh Metrics: For Replica dataset, we sample 2 million
points from the ground truth mesh and the reconstructed mesh,
respectively. For Cow&Lady dataset, we sample 54k points
from the ground truth point cloud and the reconstructed mesh,
respectively. For Newer College dataset, we sample 2 million
points from the ground truth point cloud and the reconstructed
mesh, respectively.

We compute precision, recall, and F1 score with a threshold
of 0.05m for the Replica and Cow&Lady datasets, and 0.2m
for the Newer College dataset. A point is considered to be
correctly reconstructed if its distance to the other point cloud
is less than the threshold.

Besides, we compute the accuracy and the completion,
which are defined as:

Accuracy =
1

|P|
∑
p∈P

min
q∈Q
∥p− q∥2, (50)

Completion =
1

|Q|
∑
q∈Q

min
p∈P
∥p− q∥2, (51)

where P is the reconstructed point cloud and Q is the ground
truth point cloud.

We also choose to use Chamfer-L1 distance in place of
the standard Chamfer distance for more intuitive interpretation
of the error in meters, which is the average of accuracy and
completion.

3) SDF Metrics: For SDF evaluation, we query each
method with a regular grid of points covering the bounding box
of the ground truth mesh or point cloud. The grid resolution
is set to 0.05m for the Replica and Cow&Lady datasets, and
0.2m for the Newer College dataset. Prediction may fail for
Voxblox and FIESTA at some query points because they rely
on the eight voxel corners to interpolate the SDF value. In
such cases, we exclude the failed points when calculating the
metrics for Voxblox and FIESTA.

4) Time Metrics: While it is straightforward to measure
the prediction time for all methods, measuring the update
time is more complex due to the different update strategies
employed by each method. For a fair comparison, we measure
the average update time per scan for all methods. Specifically,
we record the total time taken to process all scans in a dataset
(but exclude time of data loading, logging and etc.) and divide
it by the number of scans to obtain the average update time per
scan. This approach provides a consistent basis for comparing
the efficiency of each method’s update process.
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