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Abstract— Estimation of signed distance functions (SDFs)
from point cloud data has been shown to benefit many robot
autonomy capabilities, including localization, mapping, motion
planning, and control. Methods that support online and large-
scale SDF reconstruction tend to rely on discrete volumetric
data structures, which affect the continuity and differentiability
of the SDF estimates. Recently, using implicit features, neural
network methods have demonstrated high-fidelity and differen-
tiable SDF reconstruction but they tend to be less efficient, can
experience catastrophic forgetting and memory limitations in
large environments, and are often restricted to truncated SDFs.
This work proposes ∇-SDF, a hybrid method that combines
an explicit prior obtained from gradient-augmented octree
interpolation with an implicit neural residual. Our method
achieves non-truncated (Euclidean) SDF reconstruction with
computational and memory efficiency comparable to volumetric
methods and differentiability and accuracy comparable to neu-
ral network methods. Extensive experiments demonstrate that
∇-SDF outperforms the state of the art in terms of accuracy
and efficiency, providing a scalable solution for downstream
tasks in robotics and computer vision.

I. INTRODUCTION

Accurate and differentiable geometric environment repre-

sentations are critical for many functions in robot autonomy

and computer vision, including simultaneous localization and

mapping [1]–[3], rendering and AR/VR [4]–[6], autonomous

navigation [7], [8] and manipulation [9]–[11]. In robotics,

fast updates of the environment model from sensor obser-

vations and access to gradient information are important to

enable robots to navigate reactively and safely and to interact

with the environment precisely, while a small memory foot-

print is important for the scalability of the representation.

In this work, we focus on signed distance function (SDF)

reconstruction. Given a query point, an SDF returns the

signed distance to the nearest surface in the environment

with sign indicating whether the query is in free (positive)

or occupied (negative) space. SDFs have received increasing

attention due to their constant-time complexity for distance

and collision queries and their ability to capture complex

obstacle surfaces implicitly as a zero-level set.

SDF reconstruction methods can roughly be organized

into three categories: volumetric methods (e.g., [7], [12]),

Gaussian Process (GP) methods (e.g., [13], [14]), and neural

network methods (e.g., [15], [16]). We review representative

papers from these categories in Sec. II. Volumetric methods

utilize advanced data structures, like octrees and hashmaps,

and are known for their real-time performance and scalability

to large scenes. However, they provide non-differentiable

SDF estimates and require significant storage to achieve

higher accuracy. GP methods learn continuous SDF models

Fig. 1: ∇-SDF reconstructs an accurate Euclidean signed distance
function online from streaming point cloud data.

with uncertainty quantification but often suffer from high

computational complexity and poor scalability. Recently,

neural network methods have shown great potential to learn

compact and accurate SDF representations, but they tend to

be restricted to truncated SDF and struggle with catastrophic

forgetting in large scenes or in online settings.

We propose ∇-SDF, a hybrid method that combines the

strengths of volumetric methods, in the form of an explicit

SDF prior obtained from octree interpolation, and neural

network methods, in the form of implicit features decoded

into a residual correction of the explicit prior. To construct

the explicit prior, we use a semi-sparse octree with SDF

and gradient estimates stored at the octant vertices and

design a new gradient-augmented interpolation approach to

obtain smooth and accurate SDF priors at arbitrary query

positions. We augment the prior prediction with a neural

network residual, which recovers fine geometric details of

the observed surface from implicit features. We train our

hybrid explicit-implicit model using three loss functions

that supervise both near-surface and distant SDF values

and accelerate the convergence to achieve real-time highly

accurate SDF reconstruction.

The closest works to ours are H2-Mapping [17] and HIO-

SDF [18]. Similar to our method, H2-Mapping applies trilin-

ear interpolation in a sparse octree to obtain an SDF prior and

trains a neural network residual. In contrast with our method,

H2-Mapping reconstructs only truncated (near-surface) SDF.

HIO-SDF achieves non-truncated SDF reconstruction using

Voxfield [19] to generate an SDF prior and a neural network

trained on a dataset of global SDF priors and local SDF

approximations from the latest point cloud. The global priors

accelerate the convergence and prevent forgetting, but the

accuracy of the learned SDF is limited by the Voxfield prior.
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Instead, our method directly optimizes the parameters of the

octree to learn a more accurate prior and uses the residual

network to further improve the accuracy.

In summary, our work makes the following contributions.

• We introduce a new gradient-augmented interpolation in

a semi-sparse octree to obtain an SDF prior, improving

the accuracy, memory, and training speed for subsequent

SDF residual learning.

• We formulate a hybrid model that combines the explicit

priors with an implicit neural residual, enabling accurate

SDF learning both near to and far from the observed

surfaces. We also design loss functions to encourage

globally accurate SDF learning and accelerate the train-

ing process to achieve real-time performance.

II. RELATED WORK

Various methods have been proposed to learn SDF, which

can be roughly categorized into three groups: volumetric

methods [7], [12], [19]–[23], GP-based methods [13], [14],

[24], and neural network based methods [1], [15]. We first

review these three kinds of methods and then discuss the

recent trend of using hybrid models for SDF reconstruction.

A. Volumetric SDF Reconstruction

Volumetric methods like Voxblox [7] achieve real-time

SDF reconstruction. A regular grid with voxel hashing is

used to efficiently look up voxels for updates and queries.

Voxblox [7] builds a TSDF layer by projective distance,

which is the distance between the voxel center and the

observed surface point, then updates an SDF layer by

breadth-first search (BFS) and the BFS path length. Both

the projective distance and the BFS path length introduce

inaccuracies in the SDF reconstruction. Subsequent works

[19], [22] manage to narrow the errors. However, all of these

methods rely on a discrete SDF representation, which is non-

differentiable and limits the accuracy to the grid resolution. It

is also difficult to scale up the dense grid to large scenes with

high fidelity. In contrast, our work uses an octree to reduce

the memory cost and employs a multi-resolution neural hash

grid with an MLP decoder to learn a differentiable implicit

compact representation, capturing the geometric details.

B. Gaussian Process SDF Reconstruction

GP-based methods [13], [14], [24] learn continuous SDF

representations, which support SDF gradient computation

and uncertainty quantification. Although GPIS [13] achieves

accurate results in near-surface SDF prediction, it fails to

extrapolate to positions away from the surface. Log-GPIS

[24] and VDB-GPDF [14] learn unsigned distance functions

in log space, which generalize well globally but omit the sign

and struggle to scale to large environments due to the cubic

complexity of the matrix inverse during training. In com-

parison, our method uses interpolation to compute the SDF

prior, which has O(1) complexity, and matrix multiplication

during the computation of SDF residual, which has roughly

quadratic complexity of the matrix multiplication. Besides,

the octree structure and the neural hash grid have a smaller

memory footprint than the gram matrix used by GP.

C. Neural Network SDF Reconstruction

DeepSDF [15] was among the first methods to demonstrate

that neural networks can learn compact and continuous

implicit SDF representations. This inspired many subsequent

neural network methods for SDF reconstruction. iSDF [1]

formulates an incremental learning approach for SDF re-

construction by iteratively updating the MLP with training

samples generated from a key frame set and proposes Eikonal

regularization to encourage the model to satisfy the Eikonal

property of SDF. NeuS [16] learns SDF and neural radiance

fields (NeRF) [25] simultaneously, allowing the two fields to

improve each other by using an SDF-based unbiased volume

density formulation. Besides, many other works like IGR

[26], NGLoD [27] propose various neural network designs,

loss functions, training procedures, and so on to achieve

better SDF reconstruction. These works show that neural

networks are able to learn SDF accurately near the surface,

which is sufficient for high-fidelity surface reconstruction.

However, they rarely pay attention to learning accurate

SDF at locations away from the surface. Existing neural

network methods [28] that learn non-truncated SDF, which

are mostly object-level, require extensive training data and

enough training time to achieve satisfactory accuracy.

D. Hybrid Methods for SDF Reconstruction

Recently, hybrid models that combine explicit geometric

structures with implicit neural features show promising re-

sults. PIN-SLAM [2] stores neural features in near-surface

voxels. Given a query point, its SDF prediction is a weighted

sum of k SDF predictions, obtained by feeding k nearest

neural features with local positions into a global decoder.

H2-Mapping [17] presents another model that combines an

octree-based SDF prior with a neural residual. However, both

PIN-SLAM and H2-Mapping learn truncated SDF. HIO-SDF

[18] removes truncation by running Voxfield [19] first to

generate global SDF priors, which are combined with local

SDF approximations to train a neural network. However, the

accuracy and speed are limited by the volumetric method. As

the observed area grows, the neural network, whose number

of parameters is fixed, tends to learn an over-smooth SDF.

In contrast, our method, ∇-SDF, builds a semi-sparse

octree to store the prior of SDF values and gradients, which

is extendable as the scene grows and efficiently represents

the SDF of the whole space. With gradient-augmented in-

terpolation in the octree, our method can produce more ac-

curate SDF priors, leaving more capacity for the subsequent

network to recover surface geometric details.

III. PROBLEM STATEMENT

Consider a 3D environment with a set of obstacles O ⊂
R

3. The SDF d : R3 → R of O is defined as the shortest

distance from any point x ∈ R
3 to the obstacle surface ∂O,

with sign indicating whether x is inside or outside of O:

d(x) =

{

miny∈∂O ∥x− y∥
2
, x ̸∈ O,

−miny∈∂O ∥x− y∥
2
, x ∈ O.

(1)

The SDF satisfies two key properties: 1) the obstacle surface

is encoded as the zero-level set, d(x) = 0, ∀x ∈ ∂O, and 2)
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Fig. 2: Method Overview: a) We keep key frames with small overlap and those that maximize the surface coverage for training; b) with
the selected key frames and the current frame, we generate three types of samples: surface points, perturbed points around the surface,
and free-space points; c) to predict SDF, we first obtain an SDF prior dga(x) with gradient-augmented interpolation in a semi-sparse
octree, where each octant vertex has estimated SDF value and gradient; d) a multi-resolution hash grid with an MLP decoder is used to
obtain an SDF residual correction δd(x); e) the SDF prior dga(x) and the SDF residual δd(x) are combined as the final SDF prediction

d̂(x) = dga(x) + δd(x), and the parameters are trained with three loss functions: reconstruction loss, Eikonal loss and projection loss.

the gradient of d(x) is the unit vector pointing away from the

nearest surface point and satisfies an Eikonal equation [1]:

∇d(x) =
x− x∗

d(x)
, ∥∇d(x)∥

2
= 1, a.e., (2)

where x∗ ∈ argminy∈∂O ∥x− y∥
2
.

Given a stream of point clouds obtained from range

sensor measurements (e.g., from LiDAR or depth camera),

{ot,Pt}t=1, where ot is the sensor position at time step t
and Pt is the set of observed surface points in the global

frame, our objective is to approximate the SDF d(x) of O
as a scalar field, d̂ : R3 → R. We also aim to have d̂ capture

the SDF gradient accurately.

IV. ∇-SDF: EFFICIENT NETWORK FOR LEARNING

GLOBALLY ACCURATE SDF

Our method employs a hybrid model to reconstruct SDF.

We use a semi-sparse octree, where certain octants with no

surface contained are created, to store explicit SDF and SDF

gradient estimates in order to compute a coarse SDF prior,

described in Sec. IV-A. To recover the geometric details, we

use a multi-resolution hash grid of implicit neural features,

which allows capturing the residuals at different scales, and

an MLP decoder, which produces residual corrections to the

coarse SDF from the octree. The neural feature hash grid and

MLP decoder are described in Sec. IV-B. To train our hybrid

model efficiently, we maintain a set of key frames that cover

the observed surface with a small overlap between adjacent

frames, as described in Sec. IV-C. Then, from the key

frames and the latest frame, we generate a dataset containing

different types of samples, discussed in Sec. IV-D, and use

it to train our model with loss functions proposed in Sec.

IV-E to speed up the network convergence. Our method is

overviewed in Fig 2 with details presented in the subsections.

A. SDF Prior via Gradient-Augmented Octree Interpolation

1) Semi-Sparse Octree: The SDF prior for position x

is obtained by interpolation in a semi-sparse octree data

(a) (b) (c) (d)

Fig. 3: 2D visualization of SDF interpolation without gradient
augmentation using (a) a sparse octree and (b) a semi-sparse with
corresponding interpolation error shown in (c) and (d) respectively.
The bottom-left red region is an obstacle containing one vertex.

structure with N layers. We refer to an octree layer as

dense when all octants are created as a regular grid; as semi-

sparse when child octants containing surface points and all

of their siblings (regardless of occupancy) are created simul-

taneously; and as sparse when only child octants containing

surface points are created.

We use a semi-sparse octree of resolution r, where the first

M layers are semi-sparse and the remaining N −M layers

are sparse. This is illustrated in Fig. 2c. In each vertex xk

of an octant with k ∈ {1, . . . , 8}, we store estimates dk ∈ R

and gk ∈ R
3 of the SDF d(xk) and its gradient ∇d(xk),

respectively, which are learnable during training. To maintain

memory efficiency, a vertex is shared across neighboring

octants from different tree depths. For example, the eight

vertices of an octant are also included in the vertices of its

eight child octants. This semi-sparse structure is essential

to obtain a good SDF prior, especially for query positions

away from the surface. The on-demand initialization of all

child octants in the first M layers costs extra memory but

improves the accuracy significantly.

Fig. 3 shows a 2D example of an SDF prior using trilinear

interpolation in a sparse and a semi-sparse octree. In a sparse

octree, the SDF interpolation has more discontinuities on

the octant boundaries compared to the result in a semi-

sparse octree. Given a query point x, the semi-sparse octree

provides the smallest octant containing x that is not larger

than the smallest octant found in the sparse octree. This

guarantees that we can find vertices closer to x for computing

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 4449 submitted to 2026 IEEE International Conference on
Robotics and Automation (ICRA). Received September 16, 2025.



the SDF prior because of the creation of sibling octants,

which leads to a significantly smaller SDF interpolation error

as indicated by Fig. 3c and Fig. 3d.

For any query position where the surface exists in the

neighborhood, we can locate an octant no larger than r ×
2N−M . For queries distant to the surface, an empty large

octant is sufficient for computing an accurate SDF prior using

gradient-augmented interpolation, which is discussed next.
2) Gradient-Augmented Interpolation: To achieve smaller

SDF errors of the prior so that the subsequent neural network

can focus on restoring the geometric details, we propose

a new gradient-augmented trilinear interpolation method.

Given the smallest octant that contains a query position x,

we first obtain an extrapolation result from each vertex xk:

dk(x) = dk + g⊤
k (x− xk), k ∈ {1, . . . , 8}. (3)

Given the extrapolation results, we compute the gradient-

augmented (ga) interpolation:

dga(x) =
1

γ

8
∑

k=1

wkdk(x), γ =

8
∑

k=1

wk, (4)

where wk = 1/| diag (xi − xk)| is the interpolation weight.

In contrast, the regular trilinear (tl) interpolation is:

dtl(x) =
1

γ

8
∑

k=1

wkdk, γ =
8

∑

k=1

wk. (5)

Empirically, gradient-augmented interpolation generates

more accurate SDF priors. Fig. 4 shows two 2D examples.

Each row shows the ground truth SDF, interpolation results

of using w/ and w/o gradient augmentation, the correspond-

ing errors, and the Hessian spectral norm of SDF. As shown

in Fig. 4d and 4e, gradient-augmented interpolation has

smaller errors, especially when more obstacles are in the

scene. The gradient-augmented interpolation requires extra

memory and computation for the gradient gk and the extrapo-

lation, respectively. However, theoretically, interpolation with

gradient augmentation causes a smaller error upper bound.

Proposition 1. Consider an octant V ⊂ R
3 of size L. Assume

that the SDF d(x) is twice differentiable and the spectral

norm of its Hessian is bounded:

M := sup
x∈V

∥∇2d(x)∥2 < ∞. (6)

Assume that each vertex xk has ground-truth SDF value

dk = d(xk) and gradient gk = ∇d(xk). Then, given arbi-

trary x ∈ V , the errors of gradient-augmented interpolation

in (4) and trilinear interpolation in (5) satisfy:

ega(x) = |dga(x)− d(x)| ≤ ēga =
3ML2

8
,

etl(x) = |dtl(x)− d(x)| ≤ ētl =

√
3L

2
.

(7)

Proof. For each octant vertex xk, by Taylor’s theorem:

d(x) = dk + g⊤
k (x − xk) +

1

2
(x − xk)

⊤∇2d(ξk)(x − xk),
for some ξk on the line segment joining x and xk. Using (4)

and (6), the gradient-augmented interpolation error satisfies:

ega(x) =
1

2γ

∣

∣

∣

∣

8
∑

k=1

wk(x− xk)
⊤∇2d(ξk)(x− xk)

∣

∣

∣

∣

≤ M

2γ

8
∑

k=1

wk∥x− xk∥22 ≤ 3ML2

8
= ēga, (8)

where equality holds when x is the octant center so that
1

γ

∑

8

k=1
wk∥x− xk∥22 = 3L2/4.

Similarly, for the error of the regular trilinear interpolation,

we have by Taylor’s theorem:

d(x) = dk +∇d(ζk)
⊤(x− xk) (9)

for some ζk on the line segment joining x and xk. Then,

since ∥∇d(ζk)∥ = 1 and using (5), the trilinear interpolation

error satisfies:

etl(x) =

∣

∣

∣

∣

1

γ

K
∑

k=1

wk∇d(ξk)
⊤(x− xk)

∣

∣

∣

∣

(10)

≤ 1

γ

K
∑

k=1

wk∥x− xk∥2 ≤
√
3L

2
= ētl.

When an octant does not contain positions where the gradi-

ent is not well defined (e.g., the medial axes where the closest

point projection is not unique), (6) holds. For positions

without well-defined gradients, although the Hessian norm

blows up mathematically, gradient-augmented interpolation

has ega(x) significantly lower than ēga based on empirical

observation. The second row of Fig. 4d and 4f shows an

example of such cases, that the Hessian spectral norm is large

on the medial axes, but gradient-augmented interpolation has

smaller errors. Since we are looking for an upper bound on

the error, we ignore such cases.

As shown in Fig. 4, the gradient-augmented interpolation

has smaller errors than without gradient augmentation. Em-

pirically, as shown in Fig. 4f, M ≪ 1 so that ēga/ētl =√
3ML/4 < 1. Especially, when the octant is surrounded by

multiple obstacles, the SDF prior values stored at the vertices

are smaller than the ground truth SDF values inside the

octant. This makes SDF priors obtained from interpolation

without gradient augmentation no larger than the vertex SDF

values, leading to significantly larger errors.

Hence, the prior network T (x; θ) of our method is a semi-

sparse octree where each vertex has an estimate of SDF

and gradient, i.e., θ = {dk,gk}Kk=1
, which are learnable

parameters optimized together with the residual network. In

the experiments, we maintain a semi-sparse octree for each

scene with N = 9, M = 5 and r = 10 cm.

B. SDF Residual via Neural Feature Decoding

The accuracy of the SDF prior is limited to the octree

resolution, causing lack of geometric details. To achieve high

fidelity, we propose to learn a residual correction to the SDF

values via a neural network R(x;β), which consists of a

multi-resolution hash grid encoder [29] and an MLP decoder.

As shown in Fig. 2d, for each query point x, the multi-

resolution neural hash grid [29] encodes the point x at l
levels, where each level produces an F -dimensional feature

by interpolation. The l features from all levels are concate-

nated f = E(x;βE) ∈ R
lF and used as the input to an MLP,

which predicts the SDF residual δd(x) = D(f ;βD). In the

experiments, we have l = 4, F = 2 and the MLP has five

64-dim hidden layers with LeakyReLU activation.
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(a) (b) (c) (d) (e) (f)

Fig. 4: 2D visualization of interpolation with and without gradient augmentation for one (red region, top row) and four obstacles (red
regions, bottom row). Gradient-augmented interpolation produces a better SDF prior (b) with smaller error (d). Empirically, positions
where the SDF gradient is not well defined (large Hessian spectral norm), as shown in (f), have small interpolation error with gradient
augmentation as shown in (d).

C. Key Frame Selection

To learn SDF in real-time, it is important to keep a

compact and representative set of sensor frames for training.

We adopt the key-frame selection strategy of H2-Mapping

[17]. As shown in Fig. 2a, we insert a new sensor frame

when the newly observed area compared with the last key

frame is large enough, i.e.,
|Vc∩Vl|
|Vc∪Vl|

> cmin, where Vc is the

set of surface octants observed by the current frame, Vl is

the set of surface octants observed by the last inserted key

frame, and cmin ∈ [0, 1] is a threshold. This strategy makes

sure that the frames cover the observed surface with little

overlap between adjacent key frames.

Over time, the number of key frames grows. It is essential

to select only W key frames to maintain real-time operation.

We incrementally select the frame that observes the most

octants, mask out these octants, and repeat until W frames

are collected. If all octants are masked out, we reset the mask

except for the octants masked out by the last selected key

frame and continue the selection. This strategy ensures that

the selected key frames maximally cover the scene.

D. Dataset Generation

During online training, it is important to generate a high-

quality dataset consisting of a small number of representative

samples. At time step t, suppose the set of selected key frame

time steps is T = {k, 1 ≤ k ≤ t}, |T | ≤ W . For each

frame Pi∈T ∪{t}, we randomly choose ⌊N/|T ∪ {t}|⌋ rays

{oj = oi,qj ∈ Pi}Nj=1
to generate samples. As shown in

Fig. 2b, we generate three types of points for training:

1) Free-space Points: To learn the SDF in free space, we

sample free-space points PF by drawing nF points {xn}nF

n=1

along each ray j: xn = oj + λ(qj − oj), where λ is drawn

from the uniform distribution U(δ, 1−δ) with margin δ > 0;

2) Surface Samples and Perturbed Points: To provide

supervision for the surface reconstruction, we generate PS by

collecting the surface point qj of each ray j and the perturbed

points PP by sampling nP points {xn}nP

n=1
along each ray

j: xn = oj + α′(qj − oj), where α ∼ N (1, σ2), α′ =
min(max(α, 1− 2σ), 1 + 2σ) with σ > 0;

3) Ground Truth SDF Computation: For surface points

PS , we have ground truth SDF d(x) = 0,x ∈ PS . For

perturbed points and free-space points, we approximate the

ground truth as d̃(x) = miny∈PS
∥x− y∥2.

In our experiments, we have W = 8, N = 20480, δ =
0.05, σ = 0.06, nF = 1, and nP = 2.

E. Loss Functions

As shown in Fig. 2e, the SDF prior dga(x) = T (x; θ) and

the neural residual δd(x) = R(x;β) are combined together

to obtain a final SDF prediction:

d̂(x) = dga(x) + δd(x) = T (x; θ) +R(x;β). (11)

It is important to design appropriate loss functions to train

the octree and neural network parameters θ, β.

1) Reconstruction Loss: We apply an L1 loss over the

surface points PS and the perturbation points PP to capture

the surface geometry, which is critical for accurate 3D

reconstruction:

Lrecon =
wS

recon

|PS |
∑

x∈PS

∣

∣

∣
d̂(x)

∣

∣

∣
+

wP
recon

|PP |
∑

x∈PP

∣

∣

∣
d̂(x)− d̃(x)

∣

∣

∣
,

(12)

where wS
recon and wP

recon are the corresponding weights.

2) Eikonal Loss: To enforce the Eikonal property in (2),

we apply another L1 loss for the gradient norm:

Leik =
wS

eik

|PS |+ |PP |
∑

x∈PS∪PP

|∥ĝ(x)∥2 − 1|

+
w¬S

eik

|PF |
∑

x∈PF

|∥ĝ(x)∥2 − 1| ,
(13)

where wS
eik is the weight for surface points PS ∪ PP and

w¬S
eik is the weight for non-surface points PF . Here, ĝ(x) is

obtained from numerical differentiation instead of the auto

gradient graph because the numerical differentiation involves

more positions x±ϵei for each dimension i, which helps the

network converge and shows better training stability when

the SDF gradient is not well defined at certain positions.

3) Projection Loss: Although the Eikonal loss Leik en-

forces the gradient magnitude, the supervision for the gradi-

ent direction and SDF in the distant space is still missing.

Hence, we propose a projection loss for free-space points

PF that are collected along rays:

Lproj =
wproj

|PF |
∑

x∈PF

∣

∣

∣
d̂(x)− d̃(x)

∣

∣

∣
. (14)
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Although the above loss has a form similar to (12), we call it

projection loss because d̃(x) is actually a loose upper bound

for the ground truth SDF d(x). The purpose of this loss is not

to make the model predict d̃(x) exactly at x but to provide

the implicit supervision of the gradient direction so that it

speeds up the convergence of other loss functions.

In our experiments, we set wS
recon = 1000, wP

recon = 200,

wS
eik = 10, wP

eik = 3, and wproj = 100.

V. EVALUATION

In this section, we compare ∇-SDF with four baselines:

Voxblox [7], H2-Mapping [17], PIN-SLAM [2], and HIO-

SDF [18]. We first examine the mesh reconstruction and SDF

visualizations as a qualitative comparison, then quantitatively

evaluate the methods using different metrics. In addition, we

perform an ablation study to evaluate the contribution of each

component in our method.

We use the Replica dataset [30], which provides eight

scenes with one trajectory per scene and 2000 frames per

trajectory. To ensure full coverage of each scene, we aug-

mented each trajectory with additional 40 camera views.

A. Qualitative Results

1) Mesh Reconstruction: We first compare the recon-

structed meshes. Fig. 5 shows results on the Replica room

0 scene. H2-Mapping, PIN-SLAM, and ∇-SDF generate

complete and high-quality meshes. H2-Mapping tends to

produce smoother surfaces as it only allocates octree voxels

near the surface. The completeness of our reconstructions

is better than H2-Mapping. Compared with PIN-SLAM [2],

which only predicts SDF values in regions close to the sur-

face, our meshes exhibit smoother geometry with less noise.

Compared to HIO-SDF [18], which also estimates continu-

ous and differentiable SDFs, our reconstructions demonstrate

substantially higher fidelity.

2) SDF Reconstruction: We visualize z-plane slices of

the SDF predictions in Fig. 5. H2-Mapping and PIN-SLAM

estimate truncated SDF only. Although HIO-SDF can predict

SDF values over the entire space, it struggles to precisely

encode the surface as the zero-level set, which is crucial for

robotic tasks where accurate perception of obstacle bound-

aries is required. In contrast, ∇-SDF faithfully reconstructs

the surface position and provides reliable SDF estimates in

free space. The predictions of ∇-SDF outside the scene

boundaries are less accurate due to the lack of sensor

observations but this has little impact on applications where

robots operate within the observed workspace.

B. Quantitative Results

We compute two sets of metrics: mesh metrics to eval-

uate the surface reconstruction quality and SDF metrics to

evaluate the overall SDF predictions.

1) Mesh Metrics: We uniformly sample two point clouds,

Pg.t. and Precon, of 200k points each from the ground-truth

mesh and from the reconstructed mesh, and report Chamfer

distance, F1 score (< 5cm), precision, recall, completion,

completion ratio (< 5cm), and accuracy [2], [17].

As shown in Table I, ∇-SDF outperforms the baselines

in recall, completion, and completion ratio. Our method is

mostly the second best in the other mesh metrics. Since H2-

Mapping and PIN-SLAM are specially optimized for surface

reconstruction, they perform slightly better in metrics like

F1 score. However, their mesh has more holes, which can

also improve metrics like precision. Voxblox has the best

accuracy but performs the worst in other metrics. Since HIO-

SDF relies on a volumetric method like Voxblox to generate

the SDF dataset, it also performs worse than ∇-SDF.

2) SDF Metrics: We evaluate the SDF predictions of all

methods using a regular grid of resolution 1.25 cm. For

each scene, the grid boundary is the bounding box of the

ground-truth mesh with 15 cm padding. The ground-truth

SDF d of each grid center is computed from the ground-

truth mesh. Only points with d ≥ −0.1 m are kept for

evaluation. In Table II, we report the mean absolute error

(MAE) of SDF, the angular MAE of the SDF gradient,

and the SDF valid ratio, defined as the proportion of test

positions where a method can predict SDF. To examine the

prediction quality in different regions, we categorize the grid

points with −0.1 ≤ d ≤ 0.2 m as near surface, and the other

points as far from the surface. ∇-SDF marginally performs

better than the baselines in all SDF metrics except for near-

surface angular MAE of the SDF gradient, where our method

is the second best. HIO-SDF fails to train the network stably

when its volumetric method does not provide good results.

Since H2-Mapping and PIN-SLAM are able to predict SDF

only near the surface, their SDF valid ratio is extremely low,

while HIO-SDF and ∇-SDF both cover the whole scene.

3) Runtime Metrics: We also measure the timing of each

method. As shown in Table III, ∇-SDF runs at 8.51 fps,

which is the second fastest.

C. Ablation Study

To investigate the contribution of the semi-sparse octree

and gradient-augmented interpolation, we train three variants,

without the neural residual network, using a regular sparse

octree and interpolation without gradient augmentation. As

shown in Fig. 6, the SDF prior of our method is smoother

and the neural network residual helps recover the geometric

details. The neural network residual does not improve the

mesh metrics but improves the SDF metrics, as shown in

Table IV. When trained with a sparse octree instead, our

method performs worse due to more discontinuities caused

by the sparsity. Without gradient augmentation, the SDF

priors become worse, leading to worse performance. We

also train our model without the projection loss, which

shows significantly worse metrics because the projection

loss provides important guidance about the SDF scale and

gradient direction.

VI. CONCLUSION

This paper developed ∇-SDF, an online hybrid method

that builds globally accurate SDFs from streaming point

cloud data at scene scales. Our method combines an ex-

plicit SDF prior from gradient-augmented interpolation in
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(a) Ground Truth (b) Ours (c) H2-Mapping [17] (d) PIN-SLAM [2] (e) HIO-SDF [18] (f) Voxblox [7]

Fig. 5: Qualitative comparison of mesh reconstruction (top row) and z-plane slice of SDF reconstruction (bottom row) on Replica room
0 [30]. ∇-SDF reconstructs a mesh with the highest completion ratio and accurate SDF both near and far from the surface. H2-Mapping
and PIN-SLAM only learn truncated SDF. HIO-SDF learns an over smooth result. Voxblox significantly under-estimates the SDF.

TABLE I: Mesh reconstruction metrics on the Replica dataset [30]. The best and second best results are bold and underlined, respectively.
Metric Method room 0 room 1 room 2 office 0 office 1 office 2 office 3 office 4

Chamfer Distance [cm] ↓

∇-SDF 2.42 2.44 1.95 1.99 3.27 2.47 3.67 2.83

H2-Mapping 2.29 1.86 1.73 1.83 1.49 2.24 2.39 2.46

PIN-SLAM 2.56 2.13 2.19 1.70 1.99 2.57 2.60 2.73

HIO-SDF 3.79 3.24 3.14 2.93 3.33 3.79 3.90 3.60

Voxblox 2.29 1.92 1.92 1.75 1.93 2.42 2.39 2.42

F1 Score [<5cm]% ↑

∇-SDF 92.26 91.99 93.34 93.99 87.96 90.86 83.03 89.36

H2-Mapping 95.38 95.98 96.35 97.27 95.92 94.70 94.08 94.05

PIN-SLAM 93.00 94.57 94.40 95.57 94.13 92.93 92.13 92.81

HIO-SDF 82.83 86.45 87.96 88.41 84.85 82.51 84.20 84.82

Voxblox 93.01 93.79 92.6 93.21 92.03 90.71 90.6 91.11

Precision [<5cm]% ↑

∇-SDF 90.92 89.78 91.56 91.56 82.65 89.81 77.03 88.09

H2-Mapping 99.57 99.78 99.59 99.65 99.44 99.66 99.08 99.52

PIN-SLAM 98.57 98.39 98.59 97.95 98.40 98.06 96.83 98.39

HIO-SDF 85.86 89.04 90.54 91.24 88.55 84.83 88.24 88.15

Voxblox 98.18 98.61 95.88 96.66 98.28 97.04 96.41 97.52

Recall [<5cm]% ↑

∇-SDF 93.63 94.30 95.18 96.56 93.99 91.93 90.99 90.68

H2-Mapping 91.53 92.46 93.32 95.00 92.65 90.21 89.56 89.14

PIN-SLAM 89.83 91.03 90.55 93.29 90.22 88.31 87.87 87.82

HIO-SDF 79.93 84.00 85.53 85.75 81.44 80.31 80.52 81.74

Voxblox 88.36 89.42 89.54 89.99 86.53 85.16 85.46 85.5

Completion [cm] ↓

∇-SDF 2.27 1.94 1.78 1.56 1.73 2.33 2.51 2.62

H2-Mapping 3.05 2.51 2.14 1.64 1.98 3.06 3.09 3.35

PIN-SLAM 3.46 2.90 2.89 1.96 2.58 3.54 3.34 3.77

HIO-SDF 4.50 3.63 3.51 3.26 3.87 4.09 4.50 4.17

Voxblox 4.02 3.63 3.27 3.08 3.67 4.24 3.94 4.22

Completion Ratio [<5cm]% ↑

∇-SDF 93.82 94.57 95.36 96.73 94.71 92.12 91.49 90.95

H2-Mapping 90.79 91.87 92.87 94.75 92.11 89.19 88.45 87.88

PIN-SLAM 88.84 90.30 89.71 92.96 89.34 86.72 86.64 86.36

HIO-SDF 78.41 83.04 84.68 84.83 79.82 79.20 78.65 80.30

Voxblox 88.32 89.39 89.11 89.78 86.28 84.95 85.31 85.21

Accuracy [cm] ↓

∇-SDF 2.58 2.95 2.13 2.43 4.82 2.62 4.83 3.04

H2-Mapping 1.54 1.21 1.33 1.22 1.01 1.43 1.69 1.58

PIN-SLAM 1.66 1.37 1.49 1.45 1.31 1.61 1.87 1.70

HIO-SDF 3.09 2.85 2.78 2.62 2.79 1.49 3.31 3.03

Voxblox 0.97 0.91 1.19 1.16 0.87 1.09 1.22 1.01

TABLE II: SDF reconstruction metrics on the Replica dataset [30].
Metric Region Method room 0 room 1 room 2 office 0 office 1 office 2 office 3 office 4

SDF MAE [cm]↓

All

∇-SDF 2.13 2.02 2.03 1.46 1.43 2.15 2.35 2.39

Lower by -34% -28% -92% -44% -53% -36% -31% -29%

HIO-SDF 3.27 2.79 39.98 2.60 2.72 3.34 3.40 3.39

Voxblox 21.03 17.93 24.63 18.23 14.71 19.36 19.15 21.35

Near

∇-SDF 1.97 1.64 1.79 1.33 1.68 2.14 2.23 2.49

HIO-SDF 3.45 2.90 28.32 2.57 3.00 3.36 3.52 3.62

H2-Mapping 6.13 6.01 5.54 5.88 5.75 5.81 5.99 6.19

PIN-SLAM 4.65 8.10 8.06 8.06 8.15 8.11 8.13 8.07

Voxblox 5.00 4.55 4.51 4.64 3.99 4.98 5.10 4.70

Far

∇-SDF 2.26 2.38 2.24 1.58 1.13 2.16 2.45 2.31

HIO-SDF 3.12 2.69 50.22 2.62 2.39 3.33 3.30 3.20

Voxblox 32.78 29.41 26.79 29.76 26.55 30.97 29.90 33.56

Grad. MAE [rad]↓

All

∇-SDF 0.325 0.328 0.395 0.348 0.349 0.362 0.397 0.340

HIO-SDF 0.924 1.315 1.534 1.272 1.101 1.340 1.326 1.256

Voxblox 1.049 0.973 1.422 0.989 0.901 1.029 1.059 1.047

Near

∇-SDF 0.323 0.306 0.396 0.346 0.363 0.364 0.419 0.379

H2-Mapping 1.076 1.095 1.043 1.095 1.081 1.085 1.081 1.096

PIN-SLAM 0.870 1.566 1.571 1.569 1.530 1.578 1.550 1.572

HIO-SDF 0.975 1.301 1.560 1.281 1.115 1.324 1.331 1.257

Voxblox 0.293 0.270 0.269 0.318 0.317 0.358 0.363 0.326

Far

∇-SDF 0.326 0.348 0.394 0.350 0.333 0.360 0.343 0.311

HIO-SDF 0.884 1.328 1.512 1.262 1.084 1.356 1.325 1.255

Voxblox 1.524 1.513 1.504 1.504 1.488 1.513 1.522 1.520

SDF Valid Ratio [%]↑
H2-Mapping 16.05 16.62 18.15 17.46 20.30 16.84 17.05 15.43

PIN-SLAM 25.01 6.47 5.82 7.86 8.63 7.09 7.19 5.67
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(a) Ground Truth (b) ∇-SDF (c) ∇-SDF (prior only)

Fig. 6: Comparison of mesh reconstruction using ∇-SDF versus
only the octree prior in ∇-SDF. The neural network residual helps
recover geometric details.

TABLE III: Runtime comparison on Replica room 0 [30].

∇-SDF H2-Mapping PIN-SLAM HIO-SDF Voxblox

FPS 8.51 12.36 8.43 1.99 0.87

TABLE IV: Ablation study results on Replica office 0 [30].

Metric ∇-SDF
Prior Sparse w/o Grad. w/o Proj.

Only Octree Aug. Loss

Chamfer Distance ↓ 1.98 1.97 2.09 2.23 7.38

F1 Score %↑ 93.99 94.14 93.44 91.44 79.26

Precision %↑ 91.56 92.02 90.54 86.61 68.19

Recall %↑ 96.56 96.36 96.53 96.84 94.63

Completion [cm]↓ 1.56 1.59 1.62 1.60 1.74

Completion Ratio %↑ 96.73 96.52 96.75 97.18 96.13

Accuracy [cm]↓ 2.43 2.36 2.57 2.85 13.01

SDF All 1.46 1.52 2.65 3.69 15.76

MAE Near 1.33 1.35 1.49 2.01 2.06

[cm]↓ Far 1.58 1.69 3.75 5.30 28.76

Grad. All 0.348 0.285 0.565 0.730 0.931

MAE Near 0.346 0.290 0.469 0.599 0.486

[rad]↓ Far 0.350 0.280 0.657 0.855 1.353

a semi-sparse octree with an implicit residual from a neural

network feature decoder. Through extensive experiments, we

demonstrate that ∇-SDF is more accurate and efficient than

state-of-the-art methods. Future work will focus on utilizing

∇-SDF in robot localization, navigation, and manipulation.
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