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Fig. 1: (a) An RGB rendering of a ReplicaCAD [1] scene. (b) A 3D latent feature map constructed by our method, visualized with PCA.
(c) Attention weights on the latent map during task execution (e.g., “pick up the bowl”), highlighting regions attended by the policy model.

Abstract— In this paper, we demonstrate that mobile manipu-
lation policies utilizing a 3D latent map achieve stronger spatial
and temporal reasoning than policies relying solely on images.
We introduce Seeing the Bigger Picture (SBP), an end-to-end
policy learning approach that operates directly on a 3D map
of latent features. In SBP, the map extends perception beyond
the robot’s current field of view and aggregates observations
over long horizons. Our mapping approach incrementally fuses
multiview observations into a grid of scene-specific latent
features. A pre-trained, scene-agnostic decoder reconstructs
target embeddings from these features and enables online
optimization of the map features during task execution. A policy,
trainable with behavior cloning or reinforcement learning, treats
the latent map as a state variable and uses global context from
the map obtained via a 3D feature aggregator. We evaluate
SBP on scene-level mobile manipulation and sequential tabletop
manipulation tasks. Our experiments demonstrate that SBP
(i) reasons globally over the scene, (ii) leverages the map as
long-horizon memory, and (iii) outperforms image-based policies
in both in-distribution and novel scenes, e.g., improving the
success rate by 15% for the sequential manipulation task.
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I. INTRODUCTION

Recent advances in robot learning have led to remarkable
progress in manipulation in semi-structured environments
[2]-[4]. State-of-the-art systems use large vision—language
models (VLMs), whose rich semantic priors and cross-modal
reasoning translate natural language commands directly into
low-level actions [2]. The next frontier lies in extending these
methods beyond fixed tabletop setups to long-term mobile
manipulation at room, building, neighborhood, and even
larger scales. However, existing methods rely on 2D image-
based designs that operate directly on raw video streams.
While effective for short-term action prediction, image-based
approaches struggle with consistent 3D understanding and
long-horizon reasoning—two capabilities critical for spatially
or temporally extended tasks.

In this work, we advocate for an alternative 3D map-
based design that conditions robot policy learning on an
explicit 3D representation of the environment. A growing
body of recent work explores 3D scene representations
for manipulation. Some methods lift 2D foundation-model
features into 3D on a per-frame basis [5]-[8]. Another line of
work encodes raw point cloud observations directly with
specialized 3D backbones [9], [10]. While both families
preserve geometry and enhance local scene understanding,
reconstructing the scene from scratch at each time step
compromises temporal consistency and hinders long-horizon
reasoning. Complementary efforts fuse multiview observations
into feature fields offline [11]-[13]. Although these feature
fields improve multiview consistency, they are confined to
tabletop setups where the entire workspace remains visible at
every time step and cannot adapt on the fly to novel views.
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A key idea in this paper is to condition the robot policy on
global features obtained from a persistent 3D map (see Fig. 1),
built incrementally from streaming observations. Persistent
maps have long benefited robot navigation [14], [15], yet their
potential to enhance manipulation remains under-explored.
Such maps offer two key advantages for mobile manipulation.
First, they act as spatial memory, offering global visibility of
object locations and task goals while mitigating occlusions
from the current field of view. Second, by accumulating
information over time, they provide long-term context that
enables policies to reason beyond short observation windows.
Fig. 1b shows a latent map containing spatially grounded
language features, generated by our method. Fig. 1c illustrates
that a policy conditioned on the map may attend to the
entire scene during task execution and leverage spatially and
temporally extended context.

Contributions. We present Seeing the Bigger Picture
(SBP), an end-to-end policy learning method operating
directly on an incrementally constructed 3D latent feature
map. We propose a modular design that comprises (i) a scene-
specific latent feature grid that aggregates and compresses
multiview visual observations, and (ii) a pre-trained, scene-
agnostic decoder that reconstructs target embeddings (e.g.,
CLIP [16]) from the latent features and generalizes to diverse
scenes. During task execution, our approach enables online
optimization of latent features by using the pre-trained
decoder. To harness the 3D latent map in mobile manipulation
tasks, we propose a 3D feature aggregator that summarizes the
spatially distributed features into a compact global map token
that provides global context to support robot policy learning.
The global map token can be integrated as an additional input
into a behavior cloning or reinforcement learning policy, and
we show that the resulting policy achieves improvements in
long-horizon reasoning and task execution.

Our contributions are summarized as follows.

« We propose a mapping approach that incrementally
builds a 3D map of latent features. Its modular design
decouples scene-specific feature optimization from a
scene-agnostic feature decoder, enabling generalization
across different environments.

« We design a policy that treats the map as a state and
tokenizes its features with a 3D feature aggregator to
improve spatial and temporal reasoning. The model sup-
ports both behavior cloning and reinforcement learning.

o We demonstrate that our SBP method reasons globally
and leverages the map as spatiotemporal memory in long-
horizon manipulation tasks, outperforming image-based
policies in both in-distribution and novel scenes.

II. RELATED WORK
A. 3D Feature Mapping with Large Vision Models

A growing body of work distills vision model features, e.g.,
CLIP [16] and DINOV?2 [17], into neural scene representations
for grounding semantics in 3D. Early work such as LERF [18]
embeds vision-language features into implicit neural fields by
enforcing multiview embedding consistency, enabling open-
vocabulary queries. To achieve fine-grained segmentation,

subsequent works adopt explicit 3D representations (e.g.,
Gaussian splatting [19]) and often leverage SAM [20] to
obtain precise object boundaries [21], [22]. Recent work ex-
tends these representations to dynamic environments through
online updates [23] and 4D scene representations for moving
objects [24], [25].

Several works structure the 3D features to support down-
stream manipulation tasks, such as 6-DoF grasping. An
early method, F3RM [12], distills CLIP features into a
hierarchical 3D feature grid, enabling few-shot grasping by
optimizing grasp poses based on language queries. LERF-
TOGO [11] addresses non-uniform object activations in
LERF [18] using DINO-based object masking, leading to
improved part-aware grasp selection. GeFF [26] eliminates the
need for per-scene optimization by introducing a generalizable
NeRF [27] encoder that predicts language-aligned features.
OK-Robot [28] presents a modular pipeline for language-
conditioned household manipulation, while DynaMem [29]
utilizes a dynamic 3D voxel map with semantic vectors for
object localization and navigation. More recently, UAD [30]
distills visual affordance maps from VLMs into a task-
conditioned predictor that generalizes in the wild.

Despite their strong 3D grounding capabilities, these
methods primarily focus on localizing objects or predicting
affordances from language queries rather than leveraging the
representations for end-to-end policy learning. To bridge this
gap, we introduce a 3D latent mapping approach explicitly
designed to facilitate policy training for long-horizon tasks.

B. Manipulation Policy Learning with 3D Representations

3D scene representations encode explicit geometric struc-
ture (e.g., free space, surfaces) that is absent from 2D images,
providing a stronger spatial inductive bias for manipulation.
As a result, conditioning manipulation policies on 3D repre-
sentations improves generalization and sample efficiency.

One line of work lifts features from 2D large vision models
into 3D structures. Early work PerAct [31] encodes RGB-
D observations into voxel grids and uses a transformer to
predict the next end-effector pose [31]. In a related advance,
Act3D [5] lifts multi-scale CLIP features into a 3D feature
cloud and scores candidate points via cross-attention to regress
manipulator poses. This approach has been extended to gener-
ate full action trajectories by conditioning diffusion models on
the featurized 3D scene [6]. Alternatively, GNFactor [7] trains
a neural feature field that jointly reconstructs 2D foundation-
model features and predicts robot actions in 3D.

Another line of work bypasses 2D feature lifting and learns
policies directly from geometric observations like point clouds.
DP3 encodes raw point clouds into compact embeddings that
condition a diffusion policy for manipulation [3], [9]. To
improve precision, some approaches render the scene and
apply multi-stage transformers that progressively zoom in
on regions of interest [32]. To reintroduce rich semantics,
recent work fuses point clouds with DINO features, forming
semantic fields that enable part-level generalization across
object instances [8]. Leveraging 3D geometric priors, EquiBot
combines SIM(3)-equivariant architectures with a point cloud



diffusion policy, achieving invariance to scale, rotation, and
translation [10]. ActionFlow uses a transformer that attends to
SE(3)-invariant point relations and leverages flow matching
to learn symmetry-preserving trajectories [33].

Despite recent progress, most existing approaches treat 3D
scene representations as instantaneous observations, recon-
structing them from scratch at each time step. We address
these limitations by learning end-to-end manipulation policies
conditioned on a persistent 3D latent map, enabling global
and long-horizon reasoning.

III. PROBLEM FORMULATION

This paper has two primary objectives: first, to incremen-
tally construct a 3D latent feature map of a robot’s workspace
(Sec. III-A), and second, to design manipulation policies that
use the map as a state variable to execute tasks specified in
natural language (Sec. III-B).

A. Latent Feature Mapping

Let X C R3 denote the robot’s workspace and )) C R* a
target embedding space (e.g., of language features such as
CLIP [16]). We seek an efficient representation M : X — Y
that maps 3D workspace points to target embeddings.

Problem 1. Given a dataset of coordinate-feature pairs
D = {(z,y)} € X x Y, find a map M that minimizes
the reconstruction loss:

H./l\iln ]E(m,y)ND [‘C(M(I)vy)]7 (1)
where £ : Y x Y — Ry is a distance function on ).

To instantiate Problem 1 for learning language-grounded
latent maps, we use dense visual features extracted from a
VLM as the target labels y. Given an RGB image o, a depth
image Z, and camera pose (R,t), we compute per-patch
embeddings G € RF*(H*xW) by feeding the image through
the VLM’s vision encoder. Following the ViT [34] convention,
we partition the image into H x W non-overlapping patches,
each producing a k-dimensional feature embedding at its
corresponding spatial location. We back-project each patch p
with valid depth Z[p] into the world frame using the camera
intrinsics K and pose (R, t), as shown in Fig. 2:

z(p) = RK™! m Zlp] + t. b
Each 3D point z(p) is paired with its embedding y(p) =
G|p] from the VLM’s vision encoder, yielding a coordinate-
feature pair (z,y). By aggregating these pairs across multiple
viewpoints, we construct a training set D. Minimizing (1)
ensures that the latent map captures the semantics provided
by the VLM and associates them with 3D spatial locations.

B. Map-Conditioned Policy Learning

We consider a manipulator that executes language-specified
instructions. The task specification is embedded in a vector
representation ey, described below. At each time step 7, the
robot receives its proprioceptive state s, (e.g., joint angles)
and observations o, (e.g., RGB images). A key feature of
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Fig. 2: Visualization of per-patch VLM embeddings back-projected
into the 3D world frame using depth Z[p| and camera pose (R, t).

our formulation is the 3D latent map M., which is built
incrementally from the observations and serves as persistent
spatial memory of the environment (see Fig. 1). A policy
T4 With parameters ¢ maps the latent map M, the current
state s., the observation o,, and the task embedding ey to
an action a, (e.g., joint velocities).

The policy is trained in two settings. In behavior cloning
(BC) [35], the policy learns to mimic expert actions from a
demonstration dataset D*. For BC, we use a text embedding
of a command (e.g., “pick up the bowl”) as the task
embedding ey. In reinforcement learning (RL), the policy
is trained to maximize expected sum of discounted rewards,
E7r,[>_, 7" R:]. The reward R, is shaped to facilitate
learning, with bonuses for completing subgoals such as
reaching, grasping, or placing an object. For RL, we use
a learnable task embedding specifying the target object [36].

Problem 2. Determine policy parameters ¢ that enable the
robot to complete its task by solving min, J(7,), where
the form of J(m4) depends on the learning method:

T(n) —E(. a2)~p- [log my(as | My, 0-,57,e0)] (BC)
)=

—Erer, 22,7 R:] (RL)

A3

IV. LATENT FEATURE MAPPING

In this section, we present our latent mapping approach,
grounded in two principles. (1) Incremental updates: A 3D
latent map continuously integrates multiview observations to
serve as persistent spatial memory. (2) Modularity: A scene-
specific representation is decoupled from a scene-agnostic
mapping function to enable generalization across scenes.

To realize this modularity, we model the latent map as
an encoder-decoder architecture, M=(F,, Dy). The encoder
Fy: X — F lifts workspace points © € X to a latent space F,
and the decoder Dy:F — ) projects latent features f € F
to the target space ). The intermediate space JF enables
the map to capture the geometric and semantic structure
of the environment more effectively than a direct X — Y
mapping [18], [37], [38]. This architecture disentangles the
scene-specific encoder parameters ¢ from the scene-agnostic
decoder parameters . Pre-training the decoder on diverse
environments enables fast adaptation to new environments.

A. Multiresolution Feature Grid

We represent the scene as learnable latent vectors anchored
at the vertices of a 3D grid. These vectors act as spatial
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Fig. 3: Latent feature mapping. We represent the scene with a
multiresolution feature grid. For any query point x, we retrieve
features from each level via trilinear interpolation, concatenate
them to form Fy(x), and decode with Dy to reconstruct the target
embedding. The model is trained to maximize similarity between
predicted and ground-truth embeddings.

memory that is updated incrementally as new observations
arrive. Let G = {(2;, f;)}4,, where each vertex position
z; € X stores a latent vector f; € F. For a query point
x € X, its feature is retrieved by trilinear interpolation of

the eight vertex features of the voxel containing =z,

fle)y=> wlx,z)fi, “)

€N (z)

where NV (z) is the index set of the neighboring vertices and
w(+,-) is the trilinear interpolation function.

To capture information at multiple scales, we use a
hierarchy of L grids {G;}L,, ranging from coarse (I = 1)
to fine (I = L) resolutions, based on the design proposed
in [37], [38] (see Fig. 3). Let f;; € R® denote the latent
vector at vertex z;; of grid G = {(z1.4, f1.:)}1,, where M;
is the number of vertices at level [. The collection of all
latent vectors ¢ = { f;; | [=1:L, i=1:M;} constitutes the
scene-specific map parameters. The interpolated feature at
level [ is f;(z). Concatenating the features across all levels
yields the final feature representation:

L
Fy(x) =@ filx) e FCRY, d=Le 5)
=1

where € denotes concatenation. For efficient implementation,
we use a hash-based voxel grid, following [37].

B. Latent Map Optimization

The decoder Dy maps a latent feature Fy,(x) to the target
space ). The predicted feature of any query point z € X is

9(x) = Dy(Fy(x)) € Y CR™. (6)

We implement Dy as a multilayer perceptron (MLP). The
decoder is pre-trained on scenes from diverse environment
configurations to learn a general mapping from the latent
space F to the target space ). Intuitively, Fy,(x) serves as
a multiview-aggregated, compressed representation of target
feature embeddings, while Dy is trained to reconstruct them
back into the target space.

Algorithm 1 Online Latent Map Update

Require: pre-trained decoder Dy, learning rate 7.
1: Initialize map features vy from a pre-trained offline map.
2: for each time step 7 =1,2,... do
3: Set map features 1, <— 1.
4 if 7 (mod Tpaae) = 0 then
s Generate D, from (o;, Z, (R-,t;)).
6: for k =1,..., Kypgae do
7 Vr < b =V L(Dr;¢r)
8 ar ~ 7y (| Mz, 07,87, €0), where M, = (Fy_, Dy).

During task execution, the pre-trained decoder can be
kept frozen. Adaptation to new environments is accelerated
by focusing optimization on the grid parameters . The
parameters ¢ and, optionally, 6 are optimized by minimizing
the loss £ in (1). We align the predicted feature () with the
reference y using the cosine similarity loss, which empirically
outperforms alternatives such as the Ly loss. Given a dataset
D of coordinate-feature pairs (x,y), the objective is:

1
w6 |D| > -

min
(z,y)€D

cos(9(z),y)]. (7)

For each environment configuration (i.e., scene and object
arrangement), we optimize a dedicated feature grid. The
decoder is jointly pre-trained across all configurations for a
given task. Our mapping approach omits 3D positional encod-
ing to avoid overfitting to absolute coordinates and to enable
cross-scene generalization between different environments.
Fig. 3 summarizes the overall mapping approach, instantiated
for language-grounding as described in Sec. III-A.

C. Online Latent Mapping

To account for changes in the environment as the task state
progresses (e.g., object reconfiguration in multi-stage tasks),
we update the latent map online as detailed in Algorithm 1.
At the start of each policy rollout (7 = 0), we initialize
both the feature grid and the decoder from a pre-trained
offline map serving as an environment prior. The map is
updated online every Tipgae Steps using streaming robot
observations. Here, the decoder parameters 6 may be trained
or frozen. We consider the frozen-decoder setting. To preserve
the consistency of the static scene, we segment out dynamic
elements (e.g., robot arm) and exclude them from the updates,
and we suspend updates while the robot is grasping. Each
update performs Kypgue Optimization steps. The policy is
conditioned on the updated map M and generates an action
ar ~7mg(- | M+, 0-,5-,€¢). Notably, the map parameters 1
are not optimized via the policy objective in (3).

D. Implementation Details

We use a two-level feature grid (L = 2) for both room-
scale and table-scale scenes, with resolutions of 0.4 m and
0.2m (room) and 0.24 m and 0.12 m (table). We use EVA-02-
Large [39] to obtain target VLM embeddings for supervision.
For online mapping, the map is updated every Typgae =
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Fig. 4: Global map token. Latent features from F are decoded to
Y via the decoder Dy at the finest grid vertices. The 3D feature
aggregator processes the coordinate-feature pairs, and its output is
max-pooled to produce the global map token e,.

environment steps, with each update consisting of Kpgae = 20
optimization steps on the map features.

V. MAP-CONDITIONED POLICY

This section explains how the robot manipulation policy
is conditioned on the latent feature map. We first introduce
a global map token that captures scene-wide context from
the latent map, enabling global and long-horizon reasoning
(Sec. V-A). We then describe how the global map token is
integrated into the policy, learned either with behavior cloning
or reinforcement learning (Sec. V-B).

A. Global Map Token

The latent map enables the robot to retrieve global and long-
term context about the environment beyond its immediate
field of view. We introduce a 3D feature aggregator that
distills features distributed across the scene-wide map into a
compact global map token, which then conditions the policy.
An overview of this process is shown in Fig. 4.

First, we extract features from the map at the vertices of its
finest grid level. Let Z;, = {21}~ be the coordinates of
these vertices. We compute a decoded feature at each vertex
using the multiresolution feature Fy(zr ;) from (5) and the
decoder Dy:

9(z1,i) = Do (Fy(z1,))- (8)

We then form the set Sy, of coordinate—feature pairs, using
only vertices marked as occupied:

St ={ (200 9(z0,))| vi =1, i=1,...,Mp}, (9

where v; € {0,1} is an occupancy indicator for vertex zr, ;.
The features are processed by a 3D feature aggregator, Fsp,
whose output is max-pooled to produce the global map token:

em = Max—Pool(EgD (SL)). (10)

The token e, is used to condition the policy 7. With an
offline map, the global map token is time-invariant; with
online mapping (Sec. IV-C), it depends on the time step 7 as
the task state changes. The parameters of Fs3p are included
in ¢ and jointly optimized via the objective in (3).

The FEsp architecture matches the environment’s scale.
For large room-scale environments, we use a Point Trans-
former [40], whose hierarchical attention mechanism is well-
suited for capturing long-range spatial relationships. For
smaller tabletop scenes, we utilize a lightweight PointNet [41],
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Fig. 5: Map-conditioned policy network. Proprioceptive state s,
image features F;(o), task embedding e,, and global map token
em are concatenated to form a joint embedding h., which is mapped
to an action a, by the policy network mg.

whose simpler structure is sufficient for compact environ-
ments and its computational efficiency is advantageous for
sample-intensive RL. We encode coordinates with sinusoidal
positional encodings [27], concatenate them with features,
and input them to PointNet.

B. Map-Conditioned Policy Network

We treat the map token e,, in (10) as an additional state
input to the policy networks. We first outline a generic
integration scheme and, then, specify its instantiation for BC
and RL. The inputs to the policy network consist of image
features Er (o, ), proprioceptive state s, task embedding ey,
and the global map token e,,. Concatenating these inputs
yields a joint embedding h,:

(11)

which is provided as input to the policy network 74 to produce
an action a,. The action generation and concatenation details
depend on the policy architecture and learning method. The
overall architecture is illustrated in Fig. 5.

a) Map-Conditioned BC: For BC, we formulate the
policy architecture using ACT [4]. Image features from a
Transformer encoder are concatenated channel-wise with
the proprioceptive state, task embedding, and global map
token to form the joint embedding h,. Then, A, is fed into
a Transformer decoder, which predicts an action sequence
ar.-+mH—1. The task embedding e, is obtained by encoding a
natural language command (e.g., “pick up the bowl”) using
a VLM text encoder [39]. Unlike the original ACT, we use
an exponentially decaying loss weight on future action steps,
prioritizing accuracy on immediate actions. This change is
empirically effective for our expert demonstrations, which
are produced by an RL policy and less smooth than human
demonstrations. At test time, only the first action of each
predicted chunk is executed. Our BC policy uses DINOv2-
ViT-S [17] as the visual backbone E;. The Transformer
has a 4-layer encoder and 6-layer decoder, predicting action
sequences over a 16-step horizon (H =16).

b) Map-Conditioned RL: For RL, we use PPO [42]
with an actor-critic architecture where both heads are two-
layer MLPs. The actor head outputs an action distribution
7 (- | hr), while the critic head estimates the value V' (h.),
used to compute the advantage in the PPO objective. Both
heads are conditioned on the joint embedding h., formed
via feature-wise concatenation of the proprioceptive state,
the map token, a learnable task embedding e, specifying the

h, = Concat (EI(OT)7 Sr, €y, €m),
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Fig. 6: Qualitative comparison on home-rearrangement tasks under out-of-distribution conditions. At the start of each episode, the robot
is placed at a distant base pose unseen during training, with the target object completely outside of the robot’s current field of view.
Image-BC (#1 and #3) fails to localize the object in these settings, resulting in inefficient trajectories that fail to reach the target. In
contrast, Map-BC (#2 and #4) successfully navigates to and grasps the object, completing the task with direct and efficient trajectories.

TABLE I: Performance of BC policies using different visual representations for an object-picking task from three home-rearrangement
benchmarks. For each benchmark, we report success rate (SRT) and episode reward (ERT) on both the training scene (ID) and the novel
scene (OOD), averaged over three runs. Best and second-best results are highlighted in bold and underlined, respectively.

TidyHouse-Pick PrepareGroceries-Pick SetTable-Pick
Method SR (ID) SR (OOD) | ER (ID) ER (OOD) | SR (ID) SR (OOD) | ER (ID) ER (OOD) | SR (D) SR (OOD) | ER (ID) ER (OOD)
Image-BC [4] 0.31 0.29 0.50 0.50 0.30 0.25 0.46 0.44 0.55 0.49 0.58 0.56
Uplifted [6] 0.30 0.30 0.48 0.50 0.31 0.28 0.48 0.44 0.56 0.51 0.59 0.57
Point Cloud [9] 0.15 0.13 0.42 0.41 0.16 0.16 0.38 0.37 0.41 0.32 0.49 0.45
Map-BC (offline) 0.33 0.31 0.53 0.52 0.33 0.30 0.47 0.46 0.55 0.54 0.59 0.60

target object, and image features flattened then projected by
an MLP. We use a frozen DINOv2-ViT-S [17] whose output
is processed by a two-layer MLP as the visual backbone
E;. To improve sample efficiency, we adopt a two-stage
curriculum. First, we pre-train a map-agnostic, image-based
policy by replacing the global map token with a zero vector.
We then fine-tune the policy with the map token enabled via a
learnable gating mechanism. A trainable sigmoid gate applies
element-wise scaling to the map token, allowing the policy
to gradually incorporate map features during fine-tuning.

VI. EVALUATION

We evaluate SBP on its ability to (1) reason globally,
particularly for targets beyond the field of view, and (2) handle
multi-stage tasks requiring long-term context. We test SBP in
two settings: a home-rearrangement mobile manipulation task
(Sec. VI-A) and a sequential pick-and-place task (Sec. VI-
B). For the latter, we also demonstrate zero-shot sim-to-
real transfer of our learned policy to a physical robot. In
both settings, SBP demonstrates superior performance over
policies that rely solely on image-based reasoning.

Across all experiments, performance is evaluated using
success rate (SR) and episode reward (ER). The composition
of ER varies by task but is composed of object reach shaping,
a grasp bonus, and a success bonus. We evaluate performance
on both training settings (in-distribution, ID) and novel

settings (out-of-distribution, OOD). All simulations are carried
out in the ManiSkill simulator [43].

A. Mobile Manipulation Experiment

Setup. Our setup is based on Pick Subtasks from the
ManiSkill-HAB benchmark [1], [44]. Unlike the original
benchmarks, we train our policy on demonstrations from
only a single scene (sc1-13), which are generated using
the RL policy from [44]. We evaluate on the training scene
(ID, sc1-13) and a novel, unseen scene with a different
layout and object arrangement (OOD, sc1-10). To test
generalization with a map, OOD evaluation uses a pre-
generated latent map of the novel scene, without using any
expert demonstrations from the scene.

We compare three baseline policies that use different visual
representations and our map-conditioned BC policy.

o Image-BC: Image-based policy (ACT [4]).
« Uplifted: Image-based policy whose features are lifted

into transient 3D tokens via 3D RoPE [5], [6].

« Point Cloud: Point cloud-based policy with point cloud

observations processed by a 3D feature encoder [9], [41].

o Map-BC (offline): The proposed map-conditioned policy
that uses a pre-generated offline map.
To ensure a fair comparison, all methods use the same policy
architecture and hyperparameters.
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Fig. 7: Qualitative results from sequential manipulation using only
egocentric views. Image-RL fails to localize the second object (#1)
or the goal (#3) once they are out of view. In contrast, Map-RL
leverages the map as spatial memory, locating the object and goal
and completing the task sequence (#2 and #4).

TABLE II: Performance of RL policies on the sequential pick-and-
place task. We report success rate (SRT) and episode reward (ER?),
averaged over three runs. Best results are highlighted in bold.

Sequential Pick-and-Place
Method SR (ID) SR (OOD) | ER (ID) ER (OOD)
Image-RL [42] 0.82 0.75 0.77 0.7
Map-RL (offline) 0.94 0.95 0.85 0.84
Map-RL (online) 0.97 1.00 0.87 0.88

Results. Table I shows that Map-BC outperforms the
baselines on most benchmarks, with especially large gains on
challenging tasks such as TidyHouse, which includes nine tar-
get objects. We attribute this to stronger scene understanding,
enabling efficient target localization and navigation.

Fig. 6 shows two illustrative runs comparing Map-BC
and Image-BC policies in mobile manipulation tasks that
require global reasoning. In the original dataset, localization
is simplified by initializing the robot near the target and
orienting it towards the target. Instead, we apply substantial
translational and rotational perturbations to the robot’s initial
pose, resulting in the target being far outside the robot’s initial
field of view. The Image-BC baseline produces erratic and
inefficient trajectories and fails to reach the target, whereas
Map-BC drives toward the target object and completes the
task. These results indicate that the latent map enables the
policy to perform global reasoning over the scene.

B. Sequential Manipulation Experiment

Setup. We designed a two-stage sequential pick-and-place
task to evaluate whether the latent map improves performance
on long-horizon manipulation. The task requires picking
objects from a cluttered tabletop and placing them in a basket
in a prescribed order (Fig. 7). For each episode, we sample
an environment from a predefined set of scenes that differ
in the arrangements and poses of clutter and target objects.
The target set is fixed across episodes, and the execution
order of targets is randomized per episode. To mimic limited
visibility in mobile manipulation, the robot relies solely on
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Fig. 8: Real-world setup mirroring the sequential manipulation task
from simulation. Our policy is transferred from simulation to the
real robot in a zero-shot manner and completes the task.

an egocentric camera (i.e., no global view of the scene).
The scenes contain occlusions, making it challenging to
localize the target objects. The experiments are conducted on
a uFactory xArm6 robot. We evaluate on training (ID) scenes
and novel (OOD) scenes with unseen object arrangements.
We compare an image-based baseline with two variants of
the map-conditioned RL policy.
« Image-RL: Image-based policy.
¢ Map-RL (offline): The proposed map-conditioned policy
that uses a pre-generated offline map.
o Map-RL (online): The proposed map-conditioned policy
that uses an online-updated map, as described in Sec. IV-C.
All policies are trained with PPO [42] under the same policy
architecture and hyperparameters.

Results. The results of the sequential manipulation exper-
iment are summarized in Table II and illustrated in Fig. 7.
Map-RL (offline) and Map-RL (online) both outperform
Image-RL in SR and ER, with a larger margin in OOD
settings. In Fig. 7, Image-RL fails to localize the second
object or the goal once they leave the egocentric view. In
contrast, our Map-RL policy leverages the latent map as
spatial memory, enabling it to locate the objects and complete
the task sequence. Furthermore, Map-RL (online) shows an
advantage over Map-RL (offline). The latter relies on an
offline map capturing only the initial object arrangement,
whereas the former’s online updates provide temporal memory
that allows the policy to track the task state.

Real robot deployment. We deploy the Map-RL (offline)
policy, trained in simulation, on a uFactory xArm6 robot in a
zero-shot manner. Our real-world setup, shown in Fig. 8,
closely mirrors the simulation environment with aligned
coordinate frames, identical objects (e.g., table, basket, and
targets), and matched egocentric camera pose. We first build
an offline latent map of the real scene from a sequence of
egocentric RGB-D images and camera poses estimated from
the robot’s forward kinematics. We then deploy the policy
using this map as input. We do not use additional sim-to-real
transfer techniques; instead, we rely on a frozen DINOv2
visual backbone that is robust to the visual domain gap. The
policy successfully completes the sequential manipulation task
on the real robot. The sim-to-real gap still makes grasping



challenging in scenes with distant targets. Fig. 8 shows
snapshots from the policy rollout.

VII. CONCLUSION AND FUTURE WORK

While 3D maps have long been core components of robot
navigation, they have largely been overlooked in learning
manipulation policies. In this paper, we presented a 3D latent
map formulation that offers key advantages for manipulation:
(i) perception beyond the robot’s field of view and (ii)
observation aggregation over long horizons. Building on
these advantages, we proposed an end-to-end approach that
couples a 3D latent map with mobile manipulation policy
learning, providing the robot with extended spatial and
temporal context. The experiments demonstrate that the map-
conditioned policy is able to reason globally, leveraging
the map as spatiotemporal memory for scene-level mobile
manipulation and sequential manipulation tasks.

Several avenues for future work are possible. First, while
our latent map provides global, long-term context, the policy
still relies on local image features. Future work could reduce
this dependency by developing dynamic scene representations
to capture robot arm and other object motion. Second, the
map-conditioned RL policy is trained using an on-policy
method, which can be sample-inefficient, requiring pre-
training from an image-based policy. Integrating our method
with off-policy or model-based RL could mitigate these
issues. Finally, evaluating our approach on larger-scale, longer-
horizon mobile manipulation tasks would further validate its
effectiveness in diverse real-world settings.
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