
Zhirui Dai

1 Introduction

In the field of robotics, how to determine the optimal path to the destination is a critical problem
because an optimal path can help to reduce energy consumption of the robot, bring down the risk of
damage and so on. Label correcting algorithm is one of many algorithm designed for path planning.
It can guarantee an optimal path. However, in practice, not only energy but also time is precious.
In complicated cases, LCA and other methods based on it is still too slow to balance the time
efficiency and other metrics. Therefore, some faster methods, like Rapid-exploring Random Tree,
are proposed to boost the speed by providing a sub-optimal path.

In this report, I implemented six algorithms, collision detection based on Minkowski difference
and winding number, A*, RRT, RRT*, RRT-Connect and RRT*-Connect, to compare them with
seven different environments and discussed their advantages and disadvantages.

2 Problem Statement

The deterministic shortest path problem with obstacles is as follows.
In an environment which is a bounded space X with several obstacles, b1, b2, ..., bn ∈ B, with

the specified start position s and the goal position τ , try to find the path f∗(t) that

f∗(0) = s (1)

f∗(T ) = τ (2)

f∗(t) ∕∈ B ∀t ∈ [0, T ] (3)

f∗ = argmin
f

! T

0
l (f(t)) dt (4)

where l(·) is the cost function.
The discrete form of this problem is:
try to find the optimal path i∗1:T = argmin

i1:T

J i1:T from all paths from s ∈ X to τ ∈ X :

Is,τ = {ii1:T |ik ∈ X , ik ∕∈ B, i1 = s, iT = τ} (5)

Notice that T is not a constant. It can be any poitive real number.
In this report, I defined the path length as the cost function. The path length is given by (4)

and its discrete form is defined as the sum of arc lengths over the path

J i1:T =

T−1"

k=1

cik,ik+1
(6)

3 Technical Approach

3.1 Collision Detection

3.1.1 2D: minkowski difference

Minkowski difference is well-known for detecting the interference of two objects. To understand
Minkowski difference, we need to introduce Minkowski sum at first.

Given two sets A and B which represent two objects, the Minkowski sum is

1

Comparison of Path Planning Algorithms



Zhirui Dai

A⊕B = {a+ b
##a ∈ A, b ∈ B} (7)

Similarly, the Minkowski difference is defined as

A⊖B = {a− b
##a ∈ A, b ∈ B} (8)

We can regard −b as the mirror of b with respect to the origin.
From figure (1) and (2), we can see that when the line intersects with the rectangle, the

Minkowski difference contains the origin.

Figure 1: 2D Case of No Collision

Figure 2: 2D Case of Collision

3.1.2 3D: projection to 2D

In 3D, we can easily split the problem into three 2D collision detection problems by projecting the
objects to three planes, XY, Y Z,ZX. From figure (3, 4, 5), we can see that only when all the
projection results show collision does the box collides with the line segment.

2



Zhirui Dai

Figure 3: 3D Case 1 of No Collision

Figure 4: 3D Case 2 of No Collision

Figure 5: 3D Case of Collision

3.2 Winding Number

To detect whether the Minkowski difference contains the origin, we can use winding number. When
the winding number is 0, the origin is on the edge of the polygon or outside the polygon. Otherwise,
the origin is inside the polygon. The method to calculate the winding number is as follows.

3



Zhirui Dai

Algorithm: Winding Number

INPUT: point P = (x, y) and vertices of a polygon V1
OUTPUT: the winding number W2
W ← 03
for every edge of the polygon4

vi, vi+1 are two ends of the edge5
(x1, y1) ← vi, (x2, y2) ← vi+16
if y1 ≤ y7

if y2 > y and ISLEFT(vi, vi+1, P )8
W += 19

else if y2 ≤ y and ISRIGHT(vi, vi+1, P )10
W -= 111

RETURN W12
13

FUNCTION ISLEFT(p1, p2, p)14
RETURN [p1p2 × p1p]z > 015

FUNCTION ISRIGHT(p1, p2, p)16
RETURN [p1p2 × p1p]z < 017

3.3 A*

A* is based on Label Correcting Algorithm. In this report, I implemented the A* with ε-consistency.
Compared with LCA, the differences are

• Use OPEN and CLOSE set.

• Usd f values which combine g value and ε-consistent heuristic to set the priorities of elements
in the OPEN set.

3.4 RRT, RRT*, RRT-Connect, RRT*-Connect

A* is a search-based algorithm, which may be slow when the space to search is too huge. RRT,
RRT*, RRT-Connect, RRT*-Connect all aims to find out a feasible path as fast as possible.

RRT is the basic one. And RRT* tries to rewire existing samples to optimize the path simulta-
neously. However, we find that how fast the tree of samples expand in the space depends on how
wide the tree distributes in the space. Therefore, RRT-Connect uses two trees, one from the start,
the other from the goal, to speed up the expansion of sampled area so that an availabel path can
be found faster. But its path is almost as long as RRT’s because there is not rewiring. Therefore,
we can combine RRT* and RRT-Connect to get RRT*-Connect.

My implementation of RRT, RRT*, RRT-Connect and RRT*-Connect is based on rrt-algorithm.
But rrt-algorithm has serious problem of collision detection. It detects collision in a discrete way,
which is possible to ignore some collisions. Also, there are some mistakes such as checking whether
the goal is reached with a probability instead of every cycle. And the code structure is a little
messy. For example, the part of checking if goal is reached and generating the path includes several
functions that can be simplify. Therefore, I took its idea of building a RRTBase and then building
other RRT algoritms based on it and implemented RRT, RRT*, RRT-Connect and RRT*-Connect
with my own collision detection.

4



Zhirui Dai

4 Results

4.1 Performance

In the experiment, A* searches the space discretized with presision of 0.5 and RRT series algorithms
search in the continuous space. The max steer distance is 0.5 and the probability of using the goal as
the sample point is 0.1. For RRT*, to guarantee the performance overtime, the maxmium number
of samples to rewire in each cycle is 10. The maximum number of samples to used for RRT series in
every test is 50000. For every planner and every test case, the result is an average of 5 experiments.

Because A* searches in a discrete space of 0.5 precision, its path is sub-optimal as shown in table
(2). But its result is almost the best among the five planners. A* can guarantee a relatively optimal
path although it takes a long time in complicated cases. A* with 5-consistency is much faster than
A* with 1-consistency and its path length is still almost the same as A* with 1-consistency.

Compared with A*, RRT and RRT* may fail in difficult environment even they are allowed to
sample a lot. RRT series are much faster than A* in most cases. RRT-Connect makes it even faster
with bi-directional sampling. And from table (4), we can find that RRT-Connect requires the least
samples to find the path, which is helpful when the memory resource is limited. However, RRT and
RRT-Connect both give longer path because they don’t optimize their sample connections online.
RRT* solves this problem by rewiring neighbors of the new sample in every cycle, but it becomes
much slower.

I tried to get both the bonus of RRT* and RRT-Connect. So, I built RRT*-Connect and tested
it. The results show that RRT*-Connect can be very fast in most cases and still give a relatively
short path. However, in difficlut cases like maze and monza, RRT*-Connect can become very slow.
For example, RRT*-Connect spent 239 seconds in maze environment.

Overall, A* with 5-consistency is the best one that balances the trade off between path optimality
and planning speed. In real application, it is a very good strategy to do path planning with A*
starting from a high ε and then optimize the result with a lower ε if there is time left.

single cube maze window tower flappy bird room monza

A*-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A*-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RRT 1.00 1.00 1.00 1.00 1.00 1.00 0.40
RRT* 1.00 1.00 1.00 1.00 1.00 1.00 0.40

RRT-Connect 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RRT*-Connect 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Success Rate of Different Test Cases and Planners

single cube maze window tower flappy bird room monza

A*-1 8.3228 79.2922 27.0644 32.8003 25.2990 12.0711 78.0345
A*-5 8.3228 81.4596 27.2772 39.3595 29.7635 12.6569 78.4054
RRT 10.1618 120.7628 31.1166 43.8659 39.1512 19.5159 107.3766
RRT* 8.5647 79.7764 24.8592 31.2900 28.7028 14.8443 76.7844

RRT-Connect 8.2989 121.6182 30.9931 45.4622 42.0410 13.8632 105.9050
RRT*-Connect 8.1787 88.5241 26.4305 33.4949 29.2203 14.8110 77.5948

Table 2: Path Length of Different Test Cases and Planners

5



Zhirui Dai

single cube maze window tower flappy bird room monza

A*-1 0.2478 102.0771 30.3749 27.0703 19.9399 3.8537 11.1336
A*-5 0.0298 74.0040 0.3849 3.1811 3.2664 1.0540 8.0914
RRT 0.0403 40.0786 0.2529 2.2224 0.4834 0.4695 34.0580
RRT* 0.1721 170.0572 0.8659 10.8379 2.4077 2.1930 243.9128

RRT-Connect 0.0033 36.9188 0.1047 1.9129 0.3925 0.0883 15.2249
RRT*-Connect 0.0044 238.9776 0.4052 7.1060 1.1278 1.2086 57.4051

Table 3: Used Time of Different Test Cases and Planners

single cube maze window tower flappy bird room monza

A*-1 437 9992 5624 2684 3822 566 3892
A*-5 190 7210 518 920 1379 279 2887
RRT 114 14450 347 1347 535 260 42736
RRT* 126 14118 224 1244 560 247 43482

RRT-Connect 20 21418 137 831 386 63 15461
RRT*-Connect 21 24899 135 823 318 164 15468

Table 4: Used Samples of Different Test Cases and Planners

4.2 Result Visualization

The view of looking from top shows that the path crosses obstacles because of occlusion. And from
these visualization results, we can see that A* always give the most smooth path.

4.2.1 Single Cube

Figure 6: Single Cube, A*, ε = 1

6



Zhirui Dai

Figure 7: Single Cube, A*, ε = 5

Figure 8: Single Cube, RRT

Figure 9: Single Cube, RRT*

7



Zhirui Dai

Figure 10: Single Cube, RRT-Connect

Figure 11: Single Cube, RRT*-Connect

4.2.2 Maze

Figure 12: Maze, A*, ε = 1

8



Zhirui Dai

Figure 13: Maze, A*, ε = 5

Figure 14: Maze, RRT

Figure 15: Maze, RRT*

9



Zhirui Dai

Figure 16: Maze, RRT-Connect

Figure 17: Maze, RRT*-Connect

4.2.3 Window

Figure 18: Window, A*, ε = 1

10



Zhirui Dai

Figure 19: Window, A*, ε = 5

Figure 20: Window, RRT

Figure 21: Window, RRT*

11



Zhirui Dai

Figure 22: Window, RRT-Connect

Figure 23: Window, RRT*-Connect

4.2.4 Tower

Figure 24: Tower, A*, ε = 1

12



Zhirui Dai

Figure 25: Tower, A*, ε = 5

Figure 26: Tower, RRT

Figure 27: Tower, RRT*

13



Zhirui Dai

Figure 28: Tower, RRT-Connect

Figure 29: Tower, RRT*-Connect

4.2.5 Flappy Bird

Figure 30: Tower, A*, ε = 1

14



Zhirui Dai

Figure 31: Tower, A*, ε = 5

Figure 32: Flappy Bird, RRT

Figure 33: Flappy Bird, RRT*

15



Zhirui Dai

Figure 34: Flappy Bird, RRT-Connect

Figure 35: Flappy Bird, RRT*-Connect

4.2.6 Room

Figure 36: Room, A*, ε = 1

16



Zhirui Dai

Figure 37: Room, A*, ε = 5

Figure 38: Room, RRT

Figure 39: Room, RRT*

17



Zhirui Dai

Figure 40: Room, RRT-Connect

Figure 41: Room, RRT*-Connect

4.2.7 Monza

Figure 42: Monza, A*, ε = 1

18



Zhirui Dai

Figure 43: Monza, A*, ε = 5

Figure 44: Monza, RRT

Figure 45: Monza, RRT*

19



Zhirui Dai

Figure 46: Monza, RRT-Connect

Figure 47: Monza, RRT*-Connect

20




