
Particle Filter SLAM and Texture Mapping
1st Zhirui Dai

dept. Electrical and Computer Engineering

UC San Diego
San Diego, United States

zhdai@ucsd.edu

Abstract—The ability of simultaneously localization and map-
ping (SALM) is very important for an autonomous robot to sense
the environment before it makes decision about how to interact
with the world. In this report, based on particle filter, I presented
and implemented an SLAM with some useful techniques for
improving the robustness and an algorithm for texturing the
map with RGBD camera image data when the robot gets a high
confidence in its location and the environment. The effect of those
techniques I used is detailedly discussed in the following sections.

I. INTRODUCTION

To enable a robot’s autonomous ability, SLAM is one of the
most important puzzels to the blueprint. Beginning with com-
pletely unknown environment, a robot can use some sensors,
e.g. Lidar, Camera, etc. to measure the environment and try to
move to explore its surroundings. With probability inference
theory, the robot can estimate its position and orientation, and
the obstacles in the environment by evaluating data from its
sensors, which is exactly what SLAM does.

There are different kinds of estimators available for SLAM,
such as particle filter, Kalman filter, etc. In this report, I
implemented an SLAM algorithm based on particle filter. To
improve the robustness of this particle-filter-based SLAM,
some techniques, like using dynamic offsets when fine tuning
a particle pose in the map correlation step, are applied.

With a well-perfomed SLAM, the robot is able to map its
RGBD camera data to the world frame and paint the map,
which is called texture mapping. In this report, an algorithm
for texture mapping is also presented and tested.

II. PROBLEM FORMULATION

A. Motion Model

A motion model is a function f that describes how the
robot’s state xt transit to another state xt+1 with a given
control input ut at state xt. If we consider the noise to
the motion model, this function can also be expressed as a
probability density function:

xt+1 = f (xt,ut,wt) ∼ pf (·|xt,ut) (1)

where wt is the noise of the motion model.

B. Observation Model

To quantify the sensor measurement, we need an observa-
tion model, which is a function h or equivalently a probability
density function ph if we consider the noise of observation.
This model describes the observation zt of the robot depending
on xt and mt:

zt = h (xt,mt,vt) ∼ ph (·|xt,mt) (2)

where vt is the noise of the observation model.

C. Markov Assumptions

Markov assumption is a method to simplify the structure of
a dynamic system. The main assumptions for SLAM are:

1) The robot state xt+1 only depends on the previous input
ut and state xt

2) The environment state mt+1 only depends on the previ-
ous environment state mt

3) The environment state mt and robot state xt may affect
each other’s motion, but this may be ignored to further
simplify the system presentation

4) The observation zt only depends on the robot state xt

and the environment state mt

D. Bayesian Filter

With the motion model and the observation model, we can
use Bayes filter, which is a probabilistic inference technique
for estimating the state of dynamical systems, e.g. the robot or
the environment, based on evidences from control inputs and
observations using the Markov assumptions and Bayes rule:

p(x) =

!
p(x, y)dy (3)

p(x, y) = p(y|x)p(x) (4)

p(x|y, z) = p(y|x, z)p(x|z)"
p(y, s|z)ds

=
p(y|x, z)p(z|x)p(x)

p(y|z)p(z) (5)

The foundation of SLAM is Bayesian filter because some
famous filters, like particle filer, Kalman filter, etc., helpful in
SLAM are actually special cases of the Bayes filter.

1) Joint Distribution: To combine the motion model and
the observation model, Bayesian filter uses a joint distribution:

p (x0:T , z0:T ,u0:T−1)

= p0|0 (x0)# $% &
prior

T'

t=0

ph (zt|xt)# $% &
observation model

T'

t=1

pf (xt|xt−1,ut−1)# $% &
motion model

(6)

2) Prediction Step and Update Step: A Bayesian filter
performs mainly two steps in every inference cycle: prediction
step and update step, to track pt|t(xt) and pt+1|t(xt+1)

Prediction Step: given a prior density pt|t over xt and the
control input ut, uses the motion model pf to compute the
predicted density pt+1|t over xt+1:

pt+1|t(x) =

!
pf (x|s,ut) pt|t(s)ds (7)

Update Step: given the predicted density pt+1|t over xt+1

and the measurement zt+1, uses the observation model ph
to incorporate the measurement information and obtain the
posterior pt+1|t+1 over xt+1

pt+1|t+1(x) =
ph (zt+1|x) pt+1|t(x)"
ph (zt+1|s) pt+1|t(s)ds

=

ph (zt+1|xt+1)

p (zt+1|z0:t,u0:t)

!
pf (xt+1|xt,ut) pt|t (xt) dxt (8)

These two steps respectively correspond to the motion
model and the observation model, which describes the dy-
namics of the robot and the environment.

E. Particle Filter

In practice, it is sometimes difficult to well-model the
motion and the observation because of some unpredictable
disturbances. Therefore, we can use sampling method to
approximate these two models. The particle filter uses particles
to sample the environment state space and the robot state
space. To model particles, particle filter uses a mixture of delta
functions:

δ
(
x;µ(k)

)
:=

*
1 x = µ(k)

0 else
for k = 1, . . . , N (9)

with weights α(k) to represent pt|t and pt+1|t, i.e.,
prediction step:

p (xt+1|z0:t,u0:t) = pt+1|t (xt+1)

=

Nt+1|t+

k=1

α
(k)
t+1|tδ

(
xt+1;µ

(k)
t+1|t

)
(10)

update step:

p (xt|z0:t,u0:t−1) = pt|t (xt) =

Nt|t+

k=1

α
(k)
t|t δ

(
xt;µ

(k)
t|t

)
(11)

However, if we plugin the update step result (11) into the
prediction step of (7), we get

pt+1|t(x) =

Nt|t+

k=1

α
(k)
t|t pf

(
x|µ(k)

t|t ,ut

)
(12)

which looks different from (10). This means that (10) is an
approximation to the prediction step.

By plugin (10) into (8), we can derive an approximation of
the update step for particle filter:

pt+1|t+1(x)

=

Nt+1|t+

k=1

,

-
α
(k)
t+1|tph

(
zt+1|µ(k)

t+1|t

)

.Nt+1|t
j=1 α

(j)
t+1|tph

(
zt+1|µ(j)

t+1|t

)

/

0 δ
(
x;µ

(k)
t+1|t

)

(13)

1) Particle Resampling: As the particle filter updates the
weights of particles over and over again, some particles’
weights get higher and higher while the others’ lower and
lower. The particles with very lower weights are trivial to the
update process, which is similar to the depletion of particles.
Therefore, we need to resample the particles if necessary.

The threshold used to resample is:

Neff :=
1

.N
k=1

(
α
(k)
t|t

)2 (14)

There are many resampling algorithms, such as inverse
transform sampling, rejection sampling, sampling importance
resampling (SIR), stratified and systematic resampling (SSR),
etc.

In this report, I used SSR in the implementation of particle
filter SLAM.

2) Laser Correlation Model and Map Correlation: To
calculate the updated weights in (13) with Lidar data, it may be
difficult to model the lidar observation well. However, we can
utilize the dependence of lidar data in the time sequence, i.e.
use the estimated map, to correlate the data of two neighboring
lidar scan to approximate the following result:

αt+1|t+1 =
α
(k)
t+1|tph

(
zt+1|µ(k)

t+1|t

)

.Nt+1|t
j=1 α

(j)
t+1|tph

(
zt+1|µ(j)

t+1|t

) (15)

by replacing with the correlation score:

corr(y,m) =
+

i

! {mi = yi} (16)

ph(z|x,m) =
ecorr(y,m)

.
v e

corr(v,m)
∝ ecorr(y,m) (17)

We can see that (17) is actually a combination of the
correlation score and the softmax.

And the strategy I used to determine when to resample is
given by:

Neff =
1

.N
k=1

(
α
(k)
t|t

)2 ≤ Nthreshold (18)

F. SLAM

1) Occupancy Grid Mapping: If we model the map cells
mi as independent Bernoulli random variables

mi =

*
Occupied (1) with prob. γi,t = p (mi = 1|z0:t,x0:t)
Free (−1) with prob. 1− γi,t

(19)
with Bayes rule, we can derive the probability that a map

cell is occupied as

γi,t = p (mi = 1|z0:t,x0:t) (20)

=
1

ηt
ph (zt|mi = 1,xt) p (mi = 1|z0:t−1,x0:t−1) (21)

=
1

ηt
ph (zt|mi = 1,xt) γi,t−1 (22)

(1− γi,t) = p (mi = −1|z0:t,x0:t) (23)

=
1

ηt
ph (zt|mi = −1,xt) (1− γi,t−1) (24)

2) Steps in A Cycle: After initialization with the first lidar
frame, the steps in a single cycle of the SLAM is

• 1. prediction: update particles’ pose with lidar IMU data
• 2. map correlation to evaluate particles’ pose
• 3. update particles’ weights
• 4. choose the best particle and update the map with this

particle’s weight as the trust
• 5. resample if Neff is lower than the threshold

G. Camera Model and Texture Mapping

With a good estimation of the robot pose and the map
structure, we can projection the RGBD camera data back to
the world frame to paint the map.

1) Extrinsic Matrix: The extrinsic matrix of the camera is
used to transform points between the world frame and the
camera optical frame:

1

223

Xo

Yo

Zo

1

4

556 =

7
oRrR

⊤ −oRrR
⊤p

0⊤ 1

8

$% &
Extrinsic Matrix

1

223

Xw

Yw

Zw

1

4

556 (25)

2) Projection and Intrinsics: The projection matrix and the
intrinsics matrix are used to transform points between the
camera optical frame and the camera image frame:

1

3
u
v
1

4

6

$% &
pixels

=

,

-
fsu fsθ cu
0 fsv cv
0 0 1

/

0

$% &
Intrinsics: K

1

Zo

,

-
1 0 0 0
0 1 0 0
0 0 1 0

/

0

$% &
canonical projection: π

1

223

X0

Yo

Zo

1

4

556

(26)

H. Rotation and Translation

Given the pose (orientation R and position p) of {B} in
frame {A}, to transform a point p in the {B} frame to the
{A} frame, we use the transformation matrix:

ATB =

7
R p
0⊤ 1

8
(27)

III. TECHNICAL APPROACH

A. Data Synchronization and Joint Interpolation

Because in the dataset, joint data is more than lidar data and
the lidar data is more than the RGBD camera data, we need to
synchronize these data according to their timestamps. In order
to make the influence of timestamp mismatching lighter, I used
linear interpolation to calculate the joint data (head angle and
neck angle) given a lidar data frame’s timestamp tl:

1) Find two joint data frames that tj1 < tl < tj2
2) Do linear interpolation with these two joint data frame

for the joint result J = [θhead, θneck]

B. Dynamic Offsets Scan in Map Correlation

Because the robot’s motion magnitude can vary in a wide
range, I used a strategy to adjust the number of offsets of x,
y, and yaw to calculate the map correlation result around a
particle to fine-tune the particle’s pose.

C. Update Map with Trust

Since it takes time to reach the next resampling (a resam-
pling means a high confidence in the location and the map),
I multiplied the log odds with the best particles’ weight as a
trust about the map update.

D. Log Odds Clip and Occupied/Free Threshold

To avoid over confident in the cell occupation, I used log
odds clips λmin = −200 and λmax = 1000, threshold of
occupied cell Hoccupied = 2 and Hfree = −15 with a delta
log odds for occupied cells ∆occupied = 2 log(4) and a delta
log odds for free cells ∆free = −0.6 log 4

E. Votes Cells With Lidar Scan Data

To better discriminate the free cells and the occupied cells,
I used the number of lidar points dropped in a cell to evaluate
the confidence of cell occupancy instead of simply assigning
those cells containing lidar points to 1.

F. Softmax Temperature

Softmax is also useful to boost the speed of convergence.
However, it makes the particle weights too sharp too quickly,
which makes the particle depleting too fast. Therefore, I used
a temperature τ = 10 to make the softmax not too sharp:

softmax(x/τ) (28)

G. Keep the Best Particle From Noise

We need to add noise to particles to do sampling. However,
the best particle is the estimation with the highest confidence,
which should not be destroyed by adding noise. Instead, I
added noise to other particles to make them compete with the
best particles. This is a very important technique to make the
SLAM robust.

H. Parallel Computation and Visualization

To improve the performance, I implemented a parallel
computation module that computes free cell searching. I also
vectorized the computation of map correlation to use the
numpy auto parallel computation.

The realtime visualization of the result is also done on a
separate process so that it won’t influence the SLAM’s speed.

IV. RESULTS AND DISCUSSION

A. Dead Reckoning

With only the prediction step, the result shows that the robot
is very sensitive to turning.

B. SLAM

Since dataset 1 and 4 are much larger, their final results are
still unavailable before the deadline. But the results of dataset
0, 2 and 3 show that the SLAM I implemented is very robust
even when the robot makes a 90 degree turn. A SLAM solves
the localization during turning very well.

C. Texture Mapping

