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Abstract—This paper proposes an improved neural motion
planner with the Motion Planning Network (MPNet) described in
[2]. MPNet is a computationally efficient, learning-based neural
planner for solving motion planning problems. MPNet learns a
general feature presentation of an environment with obstacles
and a sub-optimal heuristic stochastic mapping from the space
of environment feature and start position to the space of the next
path waypoint. By recursively calling MPNet, a feasible path can
be built finally. In [1] and [2], Qureshi et. al show that the C++
version of neural planner based on the batch-training MPNet
model can reach the success rate above 90% with 0.03s on Simple
2D test, 0.06s on Complex 3D and 0.53s on Rigid-body-SE2. Some
other techniques like active learning are also proposed to further
improve the success rate. In this paper, I present an improved
neural planner which can reach the similar success rate with a
MPNet model trained with fewer epochs, costing at least 50%
less running time even under Python implementation.

I. INTRODUCTION

Motion planning is an essential module in a mobile robot
system. It aims to find a collision-free and low-cost path
connecting a start and a goal in the configuration space. An
ideal motion planner should provide an optimal path when it
is feasible and report the unfeasibility when it is impossible to
reach the destination from the specified location. Besides, the
planner should be time-efficient under specific computation
resources. Many classical motion planning algorithms have
been proposed. Some of them focus on the optimality such as
dynamic programming, and label correcting, while others like
rapidly-exploring random trees (RRT) and its variant versions
aims to find a feasible sub-optimal path faster. However, as
the complexity increases, e.g. the increasing of the number
of obstacles, or the geometric complexity of obstacles, these
classical motion planning algorithms requires more and more
memory space and the speed drops dramatically.

Recently, researchers exploit the potential of machine learn-
ing and deep learning methods on motion planning and col-
lision checking. MPNet proposed by Qureshi et. al [1], [2] is
an impressive motion planning neural network. It receives a
vector of point cloud data representing obstacles in the envi-
ronment and the coordinates of the start location as the input.
After compressing the obstacle point cloud data to a compact
feature vector, MPNet infers the next feasible waypoint from
the obstacle feature vector and the start location. However,
the neural planner algorithm proposed by Qureshi et. al does
not utilize the MPNet well enough. The drawbacks will be
discussed in the next section.

Considering the features of neural network such as parallel
computation, and the bottle neck of speed performance, colli-

sion detection, I propose a different neural planner algorithm
by using MPNet as a tool for fixing path at the very beginning
and improving the efficiency of collision checking procedure.

The remaining paper includes the following contents. Sec-
tion II presents more details of MPNet and some drawbacks
of the original neural planning algorithm. Section III shows
the algorithm of collision checking, the algorithm of path
smoothing, and the algorithm of faster neural path planner
(Faster NPP). Section IV shows some benchmark results which
shows that Faster NPP can reach a success rate above 95%
within 0.015s averaged over all Simple 2D test cases.

II. RELATED WORK
A. MPNet

MPNet consists of an encoder network (ENet) for encoding
the environment obstacles and a planning network (PNet) for
inferring the next waypoint towards the goal location. (Fig.
1(a)).

ENet takes the information of environment such as point
cloud data of obstacles and outputs a compact feature represen-
tation of the environment. For different kinds of environment
information, ENet can be implemented with different types of
neural network. For images of the environment, a convolu-
tional neural network is preferred. For point cloud data, we
can simply use multiple fully connected layer to extract the
feature of environment z.

z = ENet(zps; 0°) (D

ENet is an encoder. So, we can either pre-train ENet with
a corresponding decoder network or train ENet with PNet
together in an end-to-end manner. For the encoder-decoder
method, the loss used for training ENet can be the mean square
error (MSE) between the input and the rebuilt input.

PNet is a network of multiple fully-connected layers where
every linear layer is followed by a PReLU and a Dropout.
PNet takes in the environment encoding z, the current/initial
location as start ¢;, and the goal cyoq;. Then, PNet predicts
the next waypoint ¢;1 to get closer to the goal. ¢;41 is used
as the start in the next stage during test time. (Fig. 1(b)).

ét+1 = PNet(Z, Ct, Cgoal; 9[)) (2)

To train the PNet, the MSE between ¢, and ground truth
ci+1 generated by any classical motion planning algorithm can
be used.
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Fig. 1: (a) shows the architecture of MPNet and (b) shows how to recursively use MPNet to plan the path. [2]

In [2], three training methods are proposed, offline batch-  Algorithm 3: BNP(cinit, Cgoal, 2)

learning, continual learning and active continual learning
(ACL). ACL is designed for the MPNet to learn from stream-
ing data without forgetting the history. The Faster NPP is
compatible with these training methods. So, the offline batch-

learning will be used for training in this paper.
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tree < 0

for i < 0: N do

if tree == 0 then

Cnew ¢ PNet (z,a‘;nd,ognd)

Algorithm 1: MPNetPath(c;yit, Cgoats Tobs)

0%+ 0% U{cnew}
else

1 2 < ENet (Zops)

2 0 < BNP (Cinit, Cgoals 2)

3 0 < LazyStatesContraction (o)
4 if isFeasible (o) then

5 | return o

6 else

7 for i < 0 : MAX_TRIES do

8 o < Replan (o, z2)

9 0 < LazyStatesContraction (o)
10 if isFeasible (o) then return o;
11 return &

Cnew < PNet (z,aznd,agnd)
o’ — U {chew}

e N A AR W N =

10 tree < not tree

11 if steerTo (Ugnd,agnd) then
12 o+ 0% Inverse (%)
13 return o

14 return g

Algorithm 4: Replan(o, z)

1 Opew < {UO}
2 for i = 0 : size(c) — 1 do

Algorithm 2: steerTo(o;, 0+1)

1 B+ STEP_SIZE

2fora«~0:5:1do

3 o+ (1—a)o; + acit

4 L if isInCollision (o) then return 1 ;

5 return O

B. Neural Path Planner (NPP)

3 if steerTo (04, 0;+1) then

4 | Onew ¢ Onew U {Ui+1}

5 else

6 o' + BNP (04,0041, 2)

7 if o’ then

8 ’ Onew 4 Onew U o’[1 : end]
9 else

10 L return &

11 return o,,c,,

The algorithm of NPP in [2] uses MPNet to plan the path bi-
directionally and then tries to fix some path segments occluded
by obstacles. It performs well in time consumption and success can sample waypoints in the configuration space with much
rate. Compared with variant RRT algorithm series, MPNet higher efficiency because it samples waypoints in the feasible



configuration space with higher probability. Accompanied with
the implicit heuristic function learned from the training set,
MPNet is also better at finding the next waypoint to get closer
to the goal, unlike RRT doing totally random sampling. In
a word, planners based on MPNet absorb the merits of A*
algorithm and RRT* algorithm. Algorithms (1 to 4) show the
baseline version of neural path planner M PNetPath : NP
described in [2].
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Fig. 2: A 2D case where discrete collision detection algorithm
ignores the collision under the step size of 0.01

C. Drawbacks

This planner already achieves impressive success rate and
speed as the statement in previous section. But there are still
some drawbacks.

o The simplest feasible path [¢init, Cgoai] is nOt considered
in the above algorithms. Such a case does not need to
use MPNet to do path planning. However, the Algorithm
(1) does the path planning directly without checking the
path feasibility. This may result in some failed cases that
could have been successful.

o We can see that Replan described in Algorithm (4) fixes
the path segments in collision one by one. This serial
procedure does not use the parallel feature of MPNet.

o steerToin Algorithm (2) checks the collision by dividing
a path segment into smaller segment, which may ignore
some collision beneath the step size. This method is
inefficient. There are other collision detection algorithms
which can detect the collision between obstacles and a
path segment. For example, by wrapping obstacles with
polygons, we can use Minkowski difference to detect the
collision between a polygon and a line segment. However,
these methods are still not scalable or not general enough.
With the encoded obstacle feature, a neural network can
be used at the frontend for collision detection. And these
classical algorithms can be used to guarantee that the path
is collision-free.

o The path is not contracted in time so that once the case
is very difficult, the path generated by MPNet in the

first round could be much longer than average and slows
down the subsequent procedure to fix the in-collision
path segments. Actually, a path contraction, which is
called smoothPath in the next section, can generate a
simplified path and a record indicating which segment
needs repair. Therefore, the burden of collision checking
can be relieved a lot.

III. FASTER NEURAL PATH PLANNER
A. Overview

Considering the above drawbacks, faster neural path planner
(Faster NPP) adopts the following improvements:

o Path Repair: use MPNet as a tool to fix the path at the
very beginning so that the procedure can become much
simpler. The first repair if necessary is to fix the path
segment [Cinit, Cgoar]. Sometimes the straight path from
Cinit 10 Cgoq 18 feasible and therefore it does not require
any repair.

o Collision Detection: use collision detection neural net-
work (CDNet) to detect collision in the planning pro-
cedure of MPNet and use classical collision detection
algorithm to determine if the path needs further repair.

e Path Smoothing: unlike the original NPP that
does path contraction and feasibility checking via
LazyStatesContraction and isFeasible separately,
Faster NPP tries to simplify the path and update the
record of path segment feasibility simultaneously in
every repair. Once the record shows that all the path
segments are feasible, this path is qualified.

The top level of Faster NPP is given in Algorithm (5).
Details of sub routines will be presented in the remaining of
the paper.

Algorithm 5: FasterNPP(X o5, Cstarts Cgoal)

1 0 < {Cstart7 Cgoal}
2 0,V + PathSmooth (g, Xops)
3 f < all elements in V are True

4itr <0
5 while nor f and itr < MAX_TRIES do
6 itr += 1

7 Cstart ¢ StartsOfBadSegments (o, V)

8 Cond < EndsOfBadSegments (o, V)

9 Onew < FixWithMPNet (Xops, Cstarts Cond)
10 o,V < PathSmooth (0pew, Xobs)

1 f < all elements in V are True

B. Collision Detection: Minkowski Difference

Theoretically, Minkowski difference is a perfect tool to
detect collision between objects. However, its efficiency is very
low in the collision detection of complex objects. Hence, some
measures are required to simplify the obstacle representation.
In 2D, polygon could be used to wrap an object. (Fig. (3))
In 3D, the collision detection between axis-aligned bounding



boxes (AABB) and line segments can be divided into three
sub-detections by orthogonal projection. (Fig. (4))
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Fig. 3: Minkowski sum and difference between a rectangle and
a segment. When collision happens, the Minkowski difference
contains the origin.

The definition of Minkowski sum and Minkowski difference
are as follows.

Given two sets A and B which represent two objects, the
Minkowski sum is

A®B={a+b|acAbec B} 3)

Similarly, the Minkowski difference is defined as

A@B:{a—b|a€A,b€B} 4

To implement Minkowski difference, we can implement
Minkowski sun at first. To calculate Minkowski difference,
we can mirror b around the origin at first to get the mirrored
b’. Then, calculate the Minkowski sun between a and b'.

We also need an efficient method to check if the Minkowski
difference contains the origin. Winding number algorithm [3]
is a useful tool for detecting if a point is inside a polygon,
which can be used for the task.

When the winding number is 0, the specified point P is on
the edge of the polygon V' or outside it. Otherwise, the point
P is inside the polygon V.

Then, the collision detection algorithm based on Minkowski
difference is

C. Collision Detection: Neural Network

Neural network is another powerful tool to predict collision
efficiently. With features encoded by ENet, a classifier can be
trained to classify line segments into two classes, in-collision
and collision-free.
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Fig. 4: Collision detection of AABB and line segment can
be done by detecting the collision of projections on three 2D
planes: XY, YZ and ZX.



Algorithm 6: WindingNumber(P, V)

Algorithm 8: isCollided3D(V, L)

Input : point P = (x, y) and vertices of a polygon V
QOutput: the winding number W
1 W<«0
2 for every edge of the polygon do
Vi, Vi+1 < two ends of the edge
(1,91) < Vi, (T2,92) < Vi1
if y1 <y then
if yo > y and isLeft (v;,v;41,P) then
| W+=1
else if yo < y and isRight (v;,v;+1,P) then
L W-=1

e % 9 A N e W

10 return W

11 Function isLeft (pi,p2,p):
12 | return [pipy X pip]. >0
13 Function isRight (p1,p2,p):
14| return [pips X pi1pl. <0

Algorithm 7: isCollided2D(V, L)

Input : vertices of rectangle V, path L=[cs;qrt, Cendl
Output: True if in collision, otherwise False

1 V' < MinkowskiDifference (V, L)

2 return WindingNumber ((0, 0), V') > 0

5]

ENet

Cstart | Cend

CDNet(cstarta Cend, Xobs)

Fig. 5: Collision Detection Network

To train CDNet, I used binary cross entropy as the loss. The
dataset for training, validation and test is created based on the
environments for MPNet.

The advantage of CDNet is that it allows doing collision
detection in parallel, which can boost the performance when
the path is complicated.

D. Path Smoothing

Path smoothing is another critical design in Faster NPP. It
removes extra waypoints to make the path consist of fewer
segments. The simplified path can make the robot motion
smoother in practice. What’s the most important is that it
reduces the number of collision detection in the future path
repairs. Hence, it mitigates the affects of the performance
bottleneck, collision detection.

Input : vertices of rectangle V, path L=[cstqrt, Cendl
Output: True if in collision, otherwise False

1 Vxy,Lxy < XYProjection (V, L)

2 if not isCollided2D (Vxy,Lxy) then

3 | return False

4 Vyz,Lyz + YZProjection (V, L)
5 if not isCollided2D (Vy-z, Ly z) then
6 | return False

7 Vzx,Lzx < ZXProjection (V, L)
8 if not isCollided2D (Vzx,Lzx) then
9 | return False

10 return True

Algorithm 9: isCollided_CDNet(X s, L)

Input : obstacle data X s, path L = [cy, ..., ¢y,
Output: vector V indicating if any segment is
in-collision
1 Csta'r't < {Cla ~-~7cn—1}
2 Copg < {c2y ..., cn}
3 V < CDNet (Csta'r’ta Cenda Xobs)
4 return V

Algorithm 10: PathSmooth(o, X,ps)
input : 0 = {o1,...,0n}, Xops
output: smoothed path ¢,.,, and the vector of path
segment feasibility V'
1 Opew < {01}, V@

21+ 0

3 while : <n —1 do

4 Onext < None

5 Inext =1+ 1

6 for j<n—1:—-1:ido
7 if not isCollided (Xops,[04,0;]) then
8 L Onext < 0j

9 inext <_j

10 if 0,0zt is None then

1 V « VU{False}

12 Onew < Onew U {Ui+1}
13 else

14 V «— VU{True}

15 | Onew < Onew U {Unezt}

16 return o, V

IV. RESULTS
A. Dataset

Dataset from [2] is used to train MPNet. S2D is for 2D
and R3D is for 3D. Both S2D and R3D contains 110 different
environments. For the first 100 environments, the first 4000



paths are used for training and validation and the last 1000
paths are used for test. The left 10 environments are used to
test the performance of MPNet and Faster NPP on unseen
environments. Each unseen environment contains 2000 paths.

Each Environment in S2D has 7 rectangle obstacles of size
5. And each environment in R3D has 10 box obstacles. The
sizes of different boxes vary.

The dataset used to train CDNet is generated based on S2D
and R3D. Minkowski difference collision detector is used to
generate the ground truth.

B. Train MPNet

To describe a rectangle, we need 4 parameters. In S2D,
there are 7 rectangle obstacles. Therefore, the length of the
obstacle feature generated by the encoder should be at least
28. Similarly, for R3D, the obstacle feature length should be
at least 60.

For S2D, 322167 samples are used for training and 35976
samples are used for validation. As for R3D, the numbers are
323999 and 36000.

MPNet converges after epoch 30 in both S2D and R3D.
(Fig. 6)

C. Train and Test CDNet

CDNet converges very fast in either S2D or R3D. The
accuracy in validation reaches 100% after only one training
epoch. (Fig. (7))

D. Faster NPP: use different Collision Detection Method

The test platform is i17-9700K@5.0GHz and NVIDIA RTX
2070 Super 8GB.

By setting the maximum number of repairs to be 20 and
the maximum waypoints used in one repair to be 10 (5 x 2
because of bi-directional planning), the FasterNPP : M
reaches a similar success rate with at least 50% fewer time
cost compared with the C++ version of the NPP in [2]. And
the Faster NPP : D and the Faster NPP : C are also much
faster than the python version of the NPP in [2].

Planner

S2D

R3D

NPP (B) Python
Faster NPP: D
Faster NPP: M
Faster NPP: C

0.2894 (0.4288)
0.1400 (0.1356)
0.0141 (0.0138)
0.0513 (0.0482)

1.1252 (0.5478)
0.1862 (0.1624)
0.0121 (0.0100)
0.3360 (0.1766)

Planner S2D R3D
NPP (B) C++ [1] 0.02 (0.02) 0.06 (0.07)
NPP (B) Python 0.26 (0.28) 0.27 (0.17)

Faster NPP: D
Faster NPP: M
Faster NPP: C

0.1052 (0.0963)
0.0099 (0.0097)
0.0274 (0.0286)

0.1433 (0.1262)
0.0070 (0.0060)
0.0810 (0.0574)

TABLE I: Average time cost of successful cases. D: discrete,
M: Minkowski, C: CDNet

Planner

S2D

R3D \

NPP (B) Python
Faster NPP: D
Faster NPP: M
Faster NPP: C

1.7133 (2.1976)
0.8934 (0.9077)
0.1113 (0.1186)
0.3579 (0.2948)

3.7630 (2.4827)
1.5542 (1.5408)
0.1414 (0.1271)
6.4639 (3.366)

TABLE II: Average time cost of failed cases

By comparing FasterNPP : D with NPP(B)Python,
we can see that Flaster NPP : D is faster even though it also
uses discrete collision detection. The path segment feasibility

TABLE III: Average time cost

Planner S2D R3D
NPP (B) [1] 99.30 (98.30) | 99.11 (97.76)
NPP (B) Python | 97.00 (97.00) | 83.00 (77.00)
Faster NPP: D 95.57 (95.15) | 96.95 (97.44)
Faster NPP: M 97.13 (95.92) | 97.72 (98.22)
Faster NPP: C 92.76 (92.63) | 96.05 (96.40)

TABLE IV: Success rate

vector and timely path simplification does reduce the burden
of collision checking.

The Faster NPP : C' is not faster than Faster NPP : M
in test. This is because the I/O time between CPU and
GPU becomes the bottleneck. Besides, another problem of
FasterNPP : C is that it requires more repairs to reach
higher success rate. The C'D N et may mis-classify in-collision
and collision-free so that the efficiency of repair is lower than
others.

V. CONCLUSION AND FUTURE WORK

Faster Neural Path Planner (Faster NPP) is a high-
performance path planner based on MPNet and CDNet. The
result in this paper is from the test of the Python version of
Faster NPP. It is reasonable to expect Faster NPP can become
much faster when it is implemented with C++.

Besides, we should test this planner with more difficult cases
and other popular collision detectors to exam its value in real-
time application.
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