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I. INTRODUCTION

To enable a robot’s autonomous ability, SLAM is one of the
most important puzzels to the blueprint. Beginning with com-
pletely unknown environment, a robot can use some sensors,
e.g. Lidar, Camera, etc. to measure the environment and try to
move to explore its surroundings. With probability inference
theory, the robot can estimate its position and orientation, and
the obstacles in the environment by evaluating data from its
sensors, which is exactly what SLAM does.

There are different kinds of estimators available for SLAM,
such as particle filter, Kalman filter, etc. In this report, I
implemented an SLAM algorithm based on Kalman filter.
In this report, a Visual-Inertial SLAM using IMU data and
features in stereo view is implemented.

II. PROBLEM FORMULATION

The overall problem is, given evidence of agent actions
and observations, how should the agent sense its state, like
position and orientation, and its surrounding, like obstacle
distribution, accurately and efficiently. In a dynamic system
including both the agent and the environment, the agent state
and the environment state may be coupled and the problem
becomes very complicated. If we treat this problem as a
filtering problem, the agent’s target is to filter out states with
low probability and take the state with the highest probability
as the answer to the problem.

A. Filtering Problem with Markov Assumption

We can use Markov assumption to decouple the agent and
the environment to simplify this problem,

Fig. 1. Graph of Filtering Problem with Markov Assumption, xt is the robot
state, ut is the control input, zt is the observation result, and mt is the
environment state.

As figure (1) shows, Markov assumptions simplify the
filtering problem to the inference of two sequences of hidden
states, x0:T and m0:T , given the evidence of another two
sequential data, u0:T and z0:T .

The joint distribution is given by

p(x0:T , z0:T ,u0:T )

= p0|0(x0)

>∏
t=0

ph(zt | xt)
>∏
t=1

pf (xt | xt−1,ut−1)
(1)

B. Bayes Filter

Bayes filter is a probabilistic inference technique for esti-
mating the state of dynamic systems, e.g. the robot pose or
the map structure, based on evidences from control inputs and
observations using the Markov assumptions and Bayes rule.
It is helpful for solving filtering problem. In the theory of
Bayesian filter, there are four key elements:

1) Motion Model:

xt+1 = f(xt,ut,wt) ∼ pf (· | xt,ut) (2)

2) Observation Model:

zt = h(xt,vt) ∼ ph(· | xt) (3)

3) Prediction Step: With the motion model, the prediction
step of a Bayes filter is given by

pt+1|t(x) = p(xt+1 | z0:t,u0:t)

=

∫
pf (x | s,ut)pt|t(s)ds

(4)



4) Update Step: With the prediction and the observation
model, the agent can correct its prediction by

pt+1|t+1(x) = p(xt+1 | z0:t+1,u0:t)

=
ph (zt+1|xt+1) pt+1|t(xt+1)

p (zt+1|z0:t,u0:t)

(5)

C. SLAM

In a pure localization problem, we assume that the envi-
ronment is known and therefore a Bayes filter can work well.
However, in practice, the environment state m is unknown,
which is a mapping problem.

Simultaneous Localization And Mapping (SLAM) is a
parameter estimation problem targeting localization x0:T and
mapping m. Given a dataset of the agent inputs u0:T−1 and
observations z0:T , a SLAM tries to find the most possible
sequence of x0:T and m.

SLAM can be implemented based on different techniques.
For example, early SLAM used Maximum Likelihood Es-
timation (MLE), Maximum A Posterior (MAP), and Bayes
Inference (BI). Nowadays, based on Bayes filter, there are
many options for SLAM, such as particle filter, Kalman filter,
etc.

A typical cycle of an SLAM algorithm based on Bayes filter
or other similar filters is

1) predict agent state xt+1|t with the control input ut based
on the observation model

2) correct the predicted agent state as xt+1|t+1 with the
observation zt+1 with the observation model and update
the environment m based on xt+1|t+1

III. TECHNICAL APPROACH

A. Kalman Filter

A Kalman filter is a Bayes filter with the following assump-
tions:

1) Prior: the prior pdf p0|0 is Gaussian. Because Gaussian
distribution is stable, given p0|0 is Gaussian, the prior in the
following time steps is also Gaussian

xt | z0:t,u0:t−1 ∼ N (µt|t,Σt|t) (6)

2) Motion Model: the motion model is linear in the state
and affected by Gaussian noise

xt+1 = f(xt,ut,wt) = Fxt + Gut + wt,

wt ∼ N (0,W)
(7)

xt+1|xt,ut ∼ N (Fxt + Gut,W)

where F ∈ Rdx×dx ,G ∈ Rdx×du ,W ∈ Rdx×dx
(8)

3) Observation Model: the observation model is linear in
the state and affected by Gaussian noise

zt = h (xt,vt) = Hxt + vt,

vt ∼ N (0,V)
(9)

zt|xt ∼ N (Hxt,V)

where H ∈ Rdz×dx ,V ∈ Rdz×dz
(10)

4) Noise Independency: the process wt and measurement
noise vt are independent of each other, of the state xt, and
across time.

With the above assumptions, we can derive the prediction
step and update step of a Kalman filter:

5) Prediction Step: with (4, 7), we get

pt+1|t(x) =

∫
φ (x; Fs + Gut,W)φ

(
s;µt|t,Σt|t

)
ds

= φ
(
x; Fµt|t + Gut,FΣt|tF

> + W
)

(11)

Therefore, in the prediction step, we predict the mean and
covariance of the agent state xt+1

µt+1|t = Fµt|t + Gut (12)

Σt+1|t = FΣt|tF
> + W (13)

6) Update Step: with (5, 9, 11), given observation zt+1 and
the observation model ph, we update the pdf of xt+1 by

pt+1|t+1(x) =
φ (zt+1; Hx,V)φ

(
x;µt+1|t,Σt+1|t

)
∫
φ (zt+1; Hs,V)φ

(
s;µt+1|t,Σt+1|t

)
ds

= φ
(
x;µt+1|t+1,Σt+1|t+1

)
(14)

µt+1|t+1 = µt+1|t +Kt+1|t

(
zt+1 −Hµt+1|t

)
(15)

Σt+1|t+1 =
(
I−Kt+1|tH

)
Σt+1|t (16)

Kt+1|t = Σt+1|tH
> (HΣt+1|tH

> + V
)−1

(17)

We can see that Kt+1|t is the confidence of this update
step, which is expressed as a formula of covariance Σt+1|t, V,
and the transformation H between agent state and observation.
The agent state is corrected by the difference between the
observation zt+1 and predicted observation Hµt+1|t with
confidence Kt+1|t, which is called Kalman gain.

7) Information Filter: If we let

Ω = Σ−1 (18)

ν = Σ−1µ = Ωµ (19)

the update step of Kalman filter can become very simple.
prediction:

νt+1|t = (I−Ct+1|t)F
−>νt|t + Ωt+1|tGut (20)

Ωt+1|t = Ct|tW
−1 = W−1C>t|t (21)

gain:

Ct|t = F−>Ωt|tF
−1 (F−>Ωt|tF

−1 + W−1)−1 (22)

update:

νt+1|t+1 = νt+1|t + H>V−1zt+1 (23)

Ωt+1|t+1 = Ωt+1|t + H>V−1H (24)



B. Nonlinear Kalman Filter

Kalman filter has a strong assumption on the linearity of the
motion model and the observation model. But in most cases,
the system is not linear and it can no longer be evaluated in
closed form.

However, given a motion model xt+1 = f (xt,ut,wt)
where wt ∼ N (0,W) and an observation model zt+1 =
h (xt+1,vt+1) where vt+1 ∼ N (0,V), we can force the pre-
dicted and updated pdfs to be Gaussian by evaluating their first
and second moments and approximating them with Gaussian s
with the same moments. To calculate these moments, we need
to use lots of integrals, which is infeasible in discrete cases.

Extended and Unscented Kalman filters (EKF and UKF) are
two different methods to approximate those integrals. The EKF
uses a first-order Taylor series approximation while the UKF
uses a set of sigma points that capture the mean and covariance
of the prior Gaussian pdfs to approximate the integrals via a
sum. In this report, I used EKF to implement the SLAM.

C. Extended Kalman Filter

Prediction Step
Let Ft = df

dx

(
µt|t,ut,0

)
and Qt = df

dw

(
µt|t,ut,0

)
so

that we can linearize the motion model by:

f (xt,ut,wt) ≈ f
(
µt|t,ut,0

)
+ Ft

(
xt − µt|t

)
+ Qtwt

then, we can calculate the predicted mean and covariance
in closed form:

µt+1|t ≈ f
(
µt|t,ut, 0

)
(25)

Σt+1|t ≈ FtΣt|tF
>
t + QtWQ>t (26)

Update Step
Let Ht+1 = dh

dx

(
µt+1|t,0

)
and Rt+1 = dh

dv

(
µt+1|t,0

)
so

that the linearization of the observation model is:

h (xt+1,vt+1)

≈ h
(
µt+1|t,0

)
+ Ht+1

(
xt+1 − µt+1|t

)
+ Rt+1vt+1

Then, we can use Gaussian distribution to approximate the
joint distribution of xt+1|z0:t,u0:t and zt+1:

(
xt+1|z0:t,u0:t

zt+1

)
∼ N

((
µt+1|t
mt+1|t

)
,

[
Σt+1|t Ct+1|t
C>t+1|t St+1|t

])
(27)

mt+1|t ≈ h
(
µt+1|t,0

)
(28)

St+1|t ≈ Ht+1Σt+1|tH
>
t+1 + Rt+1VR>t+1

(29)

Ct+1|t ≈ Σt+1|tH
>
t+1 (30)

Similarly, we can derive the update step

µt+1|t+1 = µt+1|t + Kt+1|t
(
zt+1 −mt+1|t

)
(31)

Σt+1|t+1 = Σt+1|t −Kt+1|tSt+1|tK
>
t+1|t

=
(
I−Kt+1|tH

)
Σt+1|t

(32)

Kt+1|t = Ct+1|tS
−1
t+1|t

= Σt+1|tH
>
t+1

(
Ht+1Σt+1|tH

>
t+1 + Rt+1VR>t+1

)−1
(33)

We can see that (32) is the same as (16).

D. SO(3) and SE(3) Geometry and Kinematics with Matrix
Lie Group and Lie Algebra

1) SO(3): A rotation matrix is an element of the Special
Orthogonal Group, SO(3):

R ∈ SO(3) =
{
R ∈ R3×3∣∣R>R = I,det(R) = 1

}
(34)

which can be represented by θ ∈ R3

R = exp(θ̂) = I + θ̂ +
1

2!
θ̂
2

+
1

3!
θ̂
3

+ ... (35)

θ specifies an axis η = θ
||θ|| and a rotation angle ||θ||.

2) SE(3): The pose T of a rigid body can be described by
a matrix in the Special Euclidean Group, SE(3):

SE(3) :=

{
T :=

[
R p
0> 1

] ∣∣∣∣R ∈ SO(3),p ∈ R3

}
⊂ R4×4

(36)

3) Matrix Lie Group and Lie Algebra: SO(3) and SE(3)
are matrix Lie groups. The Lie algebra of SO(3) is so(3) and
se(3) for SE(3). And the exponential map relates a matrix
Lie group to its Lie algebra:

R = exp(θ̂) =

∞∑
n=0

1

n!
θ̂
n

(37)

θ = log(R)∨ =

[ ∞∑
n=1

(−1)n−1

n
(A− I)n

]∨
(38)

4) Exponential Map from so(3) to SO(3): Some key
equations we will use:

• Rodrigues Formula:

θ̂
2n+1

= (−θ>θ)nθ̂ (39)

• Exponential Map:

R = exp (θ̂) = I +

(
sin ||θ||
||θ||

)
θ̂ +

(
1− cos (||θ||)
||θ||2

)
θ̂
2

(40)



5) Logarithm Map from SO(3) to so(3): because the
exponential map is surjective but not injective, ∀R ∈ SO(3),
there exists a non-unique θ ∈ R3 such that R = exp(θ̂). In
this report, I used the following logarithm map:

θ = ||θ|| = arccos

(
tr(R)− 1

2

)
(41)

η =
θ

||θ||
=

1

2 sin(||θ||)

R32 −R23

R13 −R31

R21 −R12

 (42)

θ̂ = log(R) =
||θ||

2 sin(||θ||)
(R−R>) (43)

Note that there is a singularity at θ = 0.
6) Derivative and Perturbation in SO(3): when linearizing

a non-linear dynamic system, we sometimes need to calculate
the derivative of a rotation result Rs with respect to the
rotation R because θ corresponding to R can be a parameter
of the motion model.

To calculate the derivative, we need to introduce the left
Jacobian of SO(3) under left multiplication:

JL(θ) =

∞∑
n=0

1

(n+ 1)!

(
θ̂
)n

= I +

(
1− cos ||θ||
||θ||2

)
θ̂ +

(
||θ|| − sin ||θ||
||θ||3

)
θ̂
2

≈ I +
1

2
θ̂

(44)

R = I + θ̂JL(θ) (45)

Baker-Campbell-Hausdorff Formula:

exp
(
(θ + δθ)

∧) ≈ exp
(
(JL(θ)δθ)

∧)
exp(θ̂) (46)

So, the directional derivative is

∂Rs

∂θ
= −(Rs)∧JL(θ) (47)

exp ((θ + δθ)∧) s = Rs−(Rs)∧JL(θ)︸ ︷︷ ︸
∂Rs
∂θ

δθ = Rs +
∂Rs

∂θ
δθ

(48)

E. Visual-Inertial SLAM with EKF
With camera and IMU data, we can predict and update agent

localization and mapping with EKF. The goal is to output
the agent pose wTI ∈ SE(3) overtime and the world-frame
coordinates of the point landmarks m ∈ R3×M that generated
the features zt.

1) Stereo Camera: In this report, I used stereo camera, of
which the calibration matrix M of intrinsic parameters is:

M =


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0

 (49)

2) Visual Mapping: By assuming the localization is known,
we can consider the mapping-only problem. i.e. given the
inverse IMU pose

Ut =w T−1I ∈ SE(3)

and the visual feature observations z0:T , estimate the ho-
mogeneous coordinates m ∈ R4×L in the world frame of the
L landmarks that generated the visual observations.

The landmarks are assumed to be static and their data
association at each time t is also known.

With the prior

m|z0:t ∼ N (µt,Σt) with µt ∈ R3L and Σt ∈ R3L×3L

(50)

the observation model

zt,i = h (Ut,mj) + vt,i = Mπ
(
OTIUtmj

)
+ vt,i

vt,i ∼ N (0,V)
(51)

where m is the homogeneous form of m, the projection
function and its derivative are

π(q) =
1

q3
q ∈ R4 (52)

dπ

dq
(q) =

1

q3


1 0 − q1q3 0

0 1 − q2q3 0

0 0 0 0
0 0 − q4q3 1

 ∈ R4×4 (53)

By stacking all the Nt observations as homogeneous coor-
dinates of all the L landmarks as a 4Nt vector at time t, we
can calculate all the observations at the same time:

zt = Mπ (OTIUtm) + vt (54)
vt ∼ N (0, I⊗V) (55)

I⊗V =

V
...

V

 (56)

Visual Mapping via the EKF
According to (31, 32, 33), with (54, 55, 56), we can derive

the EKF update step for visual mapping:

ẑt,i = Mπ
(
OTIUtµt,j

)
∈ R4, zt ∈ R4×Nt (57)

Kt = ΣtH
>
t

(
HtΣtH

>
t + I⊗V

)−1
(58)

µt+1 = µt + Kt (zt − ẑt) (59)
Σt+1 = (I−KtHt) Σt (60)

where µt is the estimation of landmark positions in imple-
mentation, Ht ∈ R4Nt×3L is the Jacobian of the observation
model, and its element corresponding to observations i and



different landmarks j is Ht,i,j ∈ R4×3. By considering a
perturbation δmt,j for the position of landmark j:

mj = µt,j + δµt,j (61)

and using the first-order Tayler series approximation, we
can derive Ht

zt,i = Mπ
(
OTIUt

(
µt,j + δµt,j

))
+ vt,i

= Mπ
(
OTIUt

(
µt,j + P>δµt,j

))
+ vt,i

≈Mπ
(
OTIUtµt,j

)
+ M

dπ

dq

(
OTIUtµt,j

)
OTIUtP

>δµt,j︸ ︷︷ ︸
Ht,i,j

+ vt,i

(62)

Ht,i,j =


Mdπ

dq

(
OTIUtµt,j

)
OTIUtP

>

observation i and its landmark j
0 ∈ R4×3 otherwise

(63)

3) Visual-Inertial Odometry: Considering the localization-
only problem, we employ the following assumptions:
• linear velocity vt ∈ R3 is available
• the world-frame landmark coordinates m ∈ R3×M are

known
• the association between L landmarks and Nt observations

at time t is known.
• the IMU measurements u0:T with ut = [v>t ,ω

>
t ]> and

the visual feature observations z0:T are given.
and our goal is to estimate the inverse IMU pose Ut = WT−1I,t

At time t, the prior of the pose is given by

Ut | z0:t,u0:t−1 ∼ N
(
µt|t,Σt|t

)
(64)

where µt|t ∈ SE(3) and Σt|t ∈ R6×6

Since Ut is the inverse IMU pose, with the IMU measure-
ment ut, the motion model is defined as

Ut+1 = exp
(
−τ (ut + wt)

∧)
Ut (65)

where τ is the time discretization and wt ∼ N (0,W) is the
noise.

Visual-Inertial Odometry via the EKF
By expressing the pose as a nominal pose µ ∈ SE(3) and

small perturbation δµ̂ ∈ se(3):

U = exp (δµ̂)µ

we can separate the effect of the noise wt from the motion of
the deterministic part of Ut and therefore re-write the motion
model in terms of nominal kinematics of the mean of Ut and
zero-mean perturbation kinematics:

µt+1|t = exp (−τ ût)µt|t
δµt+1|t = exp

(
−τfut

)
δµt|t + wt

Prediction Step
So, according to (25, 26), Ft = exp

(
−τfut

)
, the EKF

prediction step is given by

µt+1|t = exp (−τ ût)µt|t (66)

Σt+1|t = E
[
δµt+1|tδµ

>
t+1|t

]
= exp

(
−τfut

)
Σt|t exp

(
−τfut

)>
+ W

(67)

where

f
ut =

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6 (68)

µ̂ =

[
ω̂t vt
0> 0

]
∈ R4×4 (69)

Update Step
For the update step, with the prior Ut+1|z0:t,u0:t ∼
N
(
µt+1|t,Σt+1|t

)
and the observation model

zt+1,i = h(Ut+1,mj) + vt+1,i (70)

= Mπ
(
OTIUt+1mj

)
+ vt+1,j (71)

which is the same as the one in the visual mapping problem
but with a different variable of interest, Ut+1. So, we need the
observation model Jacobian Ht+1|t ∈ R4Nt×6 with respect to
the inverse IMU pose Ut at µt+1|t

Hi,t+1|t = M
dπ

dq

(
OTIµt+1|tmj

)
OTI

(
µt+1|tmj

)�
∈ R4×6

(72)

where for homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3) :

ξ̂s = s�ξ

[
s
1

]�
=

[
I −ŝ
0 0

]
∈ R4×6

Therefore, the update step is

Kt+1|t = Σt+1|tH
>
t+1|t

(
Ht+1|tΣt+1|tH

>
t+1|t + I⊗V

)−1
(73)

µt+1|t+1 = exp
((

Kt+1|t (zt+1 − ẑt+1)
)∧)

µt+1|t (74)

Σt+1|t+1 =
(
I−Kt+1|tHt+1|t

)
Σt+1|t (75)

where

Ht+1|t =

 H1,t+1|t
...

HNt+1,t+1|t

 (76)



4) Localization and Mapping: Now, combine the visual
mapping and visual-inertial odometry:

a. robot state: µPt|t ∈ R4×4,ΣP
t|t ∈ R6×6

b. landmark state: µLt|t ∈ R4×L,ΣL
t|t ∈ R3L×3L

c. system state covariance:

Σt|t =

[
ΣP
t|t Ct|t

CT
t|t ΣL

t|t

]
∈ R(6+3L)×(6+3L) (77)

Prediction Step
To predict the robot state and the landmark state, we still

use (66) to predict the robot state. As for the landmarks’ states,
we do not need to predict their states.

To predict the system state covariance, we use the following
equation:

Σt+1|t =

[
exp (−τ µ̂t) 0

0> I

]
Σt|t

[
exp (−τ µ̂t) 0

0> I

]>
+

[
W 0
0 0

]
(78)

Update Step
In the update step, we still use those equations described

in the former two small sections. But before using those
equations, we need to construct the H for the system from
HL and HP , which are respectively the landmark’s and the
robot state’s H matrix.

• robot state: HP ∈ R4Nt×6

• landmark state: HL ∈ R4Nt×3L

• system state: H =
[
HP ,HL

]
∈ R4NT×(6+3L)

Then, we can calculate the Kalman gain for the system
using:

Kt+1|t = Σt+1|tH
>
t+1|t

(
Ht+1|tΣt+1|tH

>
t+1|t + I⊗V

)−1
which is the same as the equation in the visual mapping

problem.
Then, we can split Kt+1|t into two parts:

Kt+1|t =

[
KP
t+1|t

KL
t+1|t

]
, KP

t+1|t ∈ R6×4Nt ,KL
t+1|t ∈ R3L×4Nt

(79)

and update the robot states and the landmarks’ states with
these two Kalman gains.

IV. RESULTS AND DISCUSSION

A. Localization Only

Fig. 2. Dataset 0022

Fig. 3. Dataset 0027



Fig. 4. Dataset 0034

Compared with the videos of these datasets, we find that
with only the localization, the path’s shape is correct overall.
But at the position of turning, the predicted turning angle is
not accurate enough. And the IMU data’s noise is cumulated
because of the absence of update step. The result of datatset
0027 shows that the path, which should be closed, is not closed
because the inaccuracy of IMU data.

B. Mapping Only

Fig. 5. Dataset 0022

Fig. 6. Dataset 0027

Fig. 7. Dataset 0034

With the predicted pose from the localization only part, we
can see that the landmarks’ positions are not well estimated.

C. SLAM

By combining the localization and the mapping, making
them correct each other, we can see that visual-inertial SLAM
is very robust. With only one parameter setup,



W =


8.e−6

8.e−6

8.e−6

2.e−10

2.e−10

2.e−10


(80)

V = I (81)

,

this SLAM algorithm can generate the paths’ of all the
dataset shown in the following images. From the error curve
of pose and landmark in every dataset’s result, we can also
see that the SLAM can handle some occasional errors from
the camera side.

Fig. 8. Dataset 0022

Fig. 9. Dataset 0027

Fig. 10. Dataset 0034
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